
Apple III

Microsoft BASIC
Reference Manual

Notice
Apple Computer, Inc. and Microsoft Corporation reserve the right to make improvements
in the product described in this manual at any time and without notice.

Disclaimer of All Warranties
and Liability Relating to Software
APPLE COMPUTER, INC. AND MICROSOFT CORPORATION MAKE NO WARRANTIES,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH
RESPECT TO THE SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. THIS SOFTWARE IS LICENSED ‘AS IS.” THE ENTIRE RISK AS TO ITS
QUALITY AND PERFORMANCE IS WITH THE BUYER. SHOULD THE SOFTWARE
PROVE DEFECTIVE FOLLOWING ITS PURCHASE, THE BUYER (AND NOT APPLE
COMPUTER, INC. OR MICROSOFT CORPORATION, THEIR DISTRIBUTORS, OR
THEIR RETAILERS) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTIONS AND ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES. IN NO EVENT WILL APPLE COMPUTER, INC. OR MICROSOFT
CORPORATION BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CON­
SEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE MANUAL OR IN
THE SOFTWARE EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO
YOU.

The SoftCard III and all software and documentation in the SoftCard package
exclusive of the CP/M operating system are copyrighted under US Copyright laws by
Microsoft Corporation. Copyright Microsoft Corporation 1982.

The CP/M operating system and CP/M documentation are copyrighted under US
Copyright laws by Digital Research. Copyright 1976, 1977, 1978 by Digital Research.
All rights reserved. (CP/M Reference Manual edited in part by Microsoft.)

This manual may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine readable form without
prior consent, in writing, from copyright owners.

® Microsoft Corporation 1982
All rights reserved

SoftCard III is a trademark of Microsoft Corporation.
Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
CP/M is a registered trademark of Digital Research, Inc.
Z80 is a registered trademark of Zilog, Inc.

._®-‘:‘:':<<<'”<-x-x-:<-xx-x<-x-x-:-:-x

1
{

Sx<I-:-:-:-:-:««-v.-

1
•••

i
•:

1 j
1

1

g £

I

I

1

1

4

j

1

S

•<
J

g

J:

1

I

1

|.......

<

j

|

$
I

■ si :<

.<

s«»>»:-wmmsSm«•:

|

•••x5>>:*>x*:"X-x-X'X'X*:-X’:-x-:-x*x*x*:*x*x-:*>
I

ii

' ■. M

l

■

1

W ® J ■.

;i

s

ig-x-x-jw-xxwxwx-x-xx'x-i-xwxcwx'x

i
1

i;

I

i:
1

!

1

§

•• ss « .

1

I

j

<

s 1

■:•-■■ ••••
1

8

■U -■ a * s
1

1

I

n

|

j

j § $8*

|

■;X-X-X-X-X-X-X-:-XvX-X-X-X

I

Annlp III 1
l

i
i .wi

1
j

I

j

|

I

y...

■ DA CIO 1
■1

B
H

Ilin
SMv Reference Manual 1

11

K-WX:-x.xX-.-.-xx.

in

j
lilil

I

—■

1

W&w,»x-K':<*5««<«"x«w:"x*x*x<’:’x<">x*x*:-X*x*x*x*x*>xo

i

j

1

I

■

:«xx<-»x«-x<w»5^>x<«-xx<«x->>xw:-x<->x':-xw-wx

i

I

1

X«-x.k->z-x:->wwwwXXXWxs«->^

■

I :

j J ;

11

1

J

i

|

^»:->x-wt>»»c-x«M-x-x<x«->x«x<-:«w

i

" 1

n
;
j

i | 1

3

|

5

j

j

<
1

J

^x-xwx<-x-x->x:-:-:-:-x->x-x<-x-z->x<->3

l |

1 i

| i
■

■- BE— .. S

1

j

j

j

1 I

I 't
1

11
1

:
<

I 1

1

1

? i

1

1

)

i
s

§

§

1
i

1

|

I 1

1

s

: I 1

I ;

1

■

s i
................. 1...i

1
........ J

>
1
1

1

1

z"“ 1

1

1

I

I

§

1
1

j 1
1 1

j
:-x-xwx-x-x-Xvx-»

1 1

1

1

I

I

1

1 1
i
1

1

I

j

>

I

I

I 1

1
s

1

■

1

1

1
1

1

1

1

1

1

ii

----------------------—

1

j

1

I

|

i

J
1

::

; *
S 1

i

1

________________________1

_______________________ I

___ ____________________ 1

1

»

t

1

1 i
_______________________ L____ I_____1

|___ i i

M
M

Microsoft BASIC Reference Manual

Contents

Introduction

2 Using This Manual
4 Syntax Notation
5 Resources for Learning BASIC

General Information
about Microsoft BASIC

8 Initialization
10 Modes of Operation
11 File Naming Conventions
11 Filename
11 Filename Extensions
12 Disk Drive Identifiers
13 Line Format
13 Line Numbers
13 Character Set
15 Control Characters
16 Reserved Words
16 Constants
17 Single and Double Precision Numeric Constants

iv Microsoft BASIC Reference Manual

18 Variables
19 Variable Names
19 Declaring Variable Types
21 Array Variables
21 ERR and ERL Variables
22 Type Conversion
24 Expressions and Operators
24 Arithmetic Operators
26 Relational Operators
27 Logical Operators
30 Functional Operators
30 String Operations
31 Input Editing
32 Error Messages

3 Microsoft BASIC
Commands and Statements

37 AUTO
37 CALL
38 CHAIN
41 CLEAR
41 CLOSE
42 COMMON
43 CONT
44 DATA
46 DEF FN
47 DEFDBL
47 DEFINT
47 DEFSNG
47 DEFSTR
48 DEF USR
49 DELETE
49 DIM
50 EDIT
55 END
56 ERASE
56 ERROR

34

Contents v

H
II

58
59
60
62
63
64
65
65
67
69
71
72
72
73
74
76
76
77
77
77
78
79
80
81
81
82
82
83
84
84
85
88
92
92
95
96
97
99

100
101
102
102

FIELD
FILES
FOR... NEXT
GET
GOSUB...RETURN
GOTO
IF...GOTO
IF...THENL ..ELSE]
INPUT
INPUT#
KILL
LET
LINE INPUT
LINE INPUT#
LIST
LLIST
LOAD
LPRINT
LPRINT USING
LSET/RSET
MERGE
MID$
NAME
NEW
ON ERROR GOTO
ON.. .GOSUB
ON.. .GOTO
OPEN
OPTION BASE
POKE
PRINT
PRINT USING
PRINT#
PRINT# USING
PUT
RANDOMIZE
READ
REM
RENUM
RESET
RESTORE
RESUME

vi Microsoft BASIC Reference Manual

103 RUN
104 SAVE
105 STOP
106 SWAP
107 SYSTEM
107 TRON/TROFF
108 WHILE...WEND
109 WIDTH
110 WRITE
111 WRITE#

4 Microsoft BASIC Functions 113

115 ABS
115 ASC
116 ATN
116 CDBL
117 CHRS
117 CINT
118
119
119

COS
CSNG
CVD

119
119
120
121

CVI
CVS
EOF
EXP

121 FIX
122 FRE
123
123
124
125
126
126
127
127
128
128
129

HEXS
INKEYS
INPUTS
INSTR
INT
LEFTS
LEN
LOC
LOF
LOG
LPOS

Contents vii

129 MIDS
130 MKDS
130 MKIS
130 MKSS
131 OCTS
131 PEEK
132 POS
132 RIGHTS
133 RND
133 SGN
134 SIN
134 SPACES
135 SPC
135 SQR
136 STRS
136 STRINGS
137 TAB
138 TAN
138 USR
139 VAL
140 VARPTR

Appendices 143

144 A Converting Programs to Microsoft BASIC
146 B Microsoft BASIC Disk I/O
160 C BASIC Assembly Language Subroutines
167 D Summary of Error Codes and Error Messages
175 E Mathematical Functions
177 F ASCII Character Codes
179 G Microsoft BASIC Reserved Words

Index 181

viii Microsoft BASIC Reference Manual

Introduction

I T

I

■:1

Using This Manual

I

.............'....■—

Introduction

4 Syntax Notation
5 Resources for Learning BASIC

■w—

I

2 Microsoft BASIC Reference Manual

1
Introduction

Microsoft™ BASIC Release 5.2 is the most extensive implemen­
tation of BASIC available for microprocessors. It meets the
requirements for the ANSI subset standard for BASIC and supports
many features rarely found in other BASICS. In addition, Microsoft
BASIC has sophisticated string handling and structured
programming features that are especially suited for applications
development. Microsoft BASIC gives users what they want from a
BASIC — ease of use plus the features that make a microcomputer
perform like a minicomputer or large mainframe.

In 1975, Microsoft wrote the first BASIC interpreter for micro­
computers. Today, Microsoft BASIC, with over 750,000 installations
in over 20 operating environments, is recognized as the defacto
industry standard. It's the BASIC you will find on all of the most
popular microcomputers. Many users, manufacturers, and software
vendors have written application programs in Microsoft BASIC.

Using This Manual

This manual has been specially prepared for use with Microsoft
BASIC Release 5.2, which is included in your SoftCard™ III
package. It serves as both a user’s guide and technical reference,
documenting both general information and detailed descriptions of
the commands, statements, and functions.

This manual is not intended as a tutorial on BASIC. It is assumed
that you have a working knowledge of the BASIC language. If you

Introduction 3

II
n
■
n
■

need more information on BASIC programming, refer to the
“Resources for Learning BASIC” section in this chapter.

This manual contains the following information:

Chapter 1 Introduction

Provides a brief description of the contents of this manual,
the notation used in describing BASIC language syntax, and
a list of references for learning BASIC programming.

Chapter 2 General Information about Microsoft BASIC

Gives general information on loading BASIC, modes of
operation, program format, special characters, data
representation, and input editing.

Chapter 3 Microsoft BASIC Commands and Statements

Contains descriptions of all the commands and statements
in Microsoft BASIC. The descriptions include syntax, what
the command or statement is used for, and in most cases,
examples.

Chapter 4 Microsoft BASIC Functions

Describes Microsoft BASIC functions. Descriptions include
syntax, purpose, and examples.

Appendix A Converting Programs to Microsoft BASIC

Shows how to convert a program written in another BASIC
to Microsoft BASIC.

Appendix B Microsoft BASIC Disk I/O
Explains disk I/O procedures for the user who is unfamiliar
with disk I/O conventions and routines.

Appendix C BASIC Assembly Language Subroutines

Discusses how to interface to assembly language
subroutines with the USR function and the CALL statement.

4 Microsoft BASIC Reference Manual

Appendix D Summary of Error Codes and Error Messages

Presents a detailed description of all the error messages
in Microsoft BASIC and their possible causes.

Appendix E Mathematical Functions

Provides a set of formulas for math functions that are not
built into Microsoft BASIC.

Appendix F ASCII Character Codes

Shows the different values of the ASCII character set.

Appendix G Microsoft BASIC Reserved Words

Lists all the reserved words in Microsoft BASIC.

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

Square brackets indicate that the enclosed entry
is optional.

Angle brackets indicate user entered data When
the angle brackets enclose lowercase text, the
user must type in an entry defined by the text; for
example, <filespec>. When the angle brackets
enclose uppercase text, the user must press the
key named by the text; for example, <RETURN>.

Since the Apple™ III computer displays lowercase
characters, you may enter commands, statements,
and functions in lowercase form. This will not
affect operation.

Braces indicate that the user has a choice
between two or more entries. At least one of the
entries enclosed in braces must be chosen unless
the entries are also enclosed in square brackets.

Introduction 5

Ellipses indicate that an entry may be repeated
as many times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered, exactly as
shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs must be entered exactly as shown.

Resources for Learning BASIC

This manual provides complete instructions for using Microsoft
BASIC. However, no teaching material for BASIC programming has
been provided. If you are new to BASIC or need help in learning
programming, we suggest you read one of the following:

Albrecht, Robert L.; Finkel, LeRoy; Brown, Jerry. BASIC.
John Wiley Sons, 1973.
Dwyer, Thomas A. and Critchfield, Margot. BASIC and the
Personal Computer. Addison-Wesley Publishing Co., 1978.
Simon, David E. BASIC From the Ground Up. Hayden,
1978.

6 Microsoft BASIC Reference Manual

RTRt R'N

S ig 2

10

WOMMOOHMOM^eeWM

General Information

24
31

16
16
18

N

3s

Initialization
Modes of Operation
File Naming Conventions
Line Format
Character Set
Reserved Words
Constants
Variables
Type Conversion
Expressions and Operators
Input Editing
Error Messages

General Information
about Microsoft BASIC

■ < J

1

1

1

i I

1 ?

I I

i I

S
f t

> iI

8 Microsoft BASIC Reference Manual

2
General Information
about Microsoft BASIC

Initialization

Your SoftCard III package includes the CP/M™ version of Microsoft
BASIC (MBASIC) on a 5.25 inch single density diskette. The name
of the file is MBASIC.COM.

To load and run MBASIC with the default memory configuration,
bring up CP/M and wait for the A> prompt. Once the prompt
appears, type the following:

MBASIC <RETURN>

The system will reply:

BASIC-80 Rev 5.2
[CP/M Version]
Copyright 1977, 78, 79, 80 © by Microsoft
Created dd-mon-yy
xxxxx Bytes free
Ok

The default memory configuration sets the number of files that may
be open at one time during execution of a BASIC program to three.
It also sets the maximum record size at 128 bytes and allows the
use of all RAM memory up to the start of FDOS (an arbitrary area in
memory set by CP/M). See Chapter 2 of the CP/M Reference
Manual for more information.

■

M

MBASIC.COM

General Information 9

If you wish to change the memory configuration, the following
command line format can be used in place of the simple MBASIC
command for initialization.

MBASIC [<filespec>] [/F:<number of files>]
[/M:<highest memory location>] [/S:<maximum record size>]

The <filespec> option allows you to RUN a program after
initialization is complete. <filespec> consists of a filename and
optional filename extension. A default extension of .BAS is used if
none is supplied and the filename is less than nine characters long.
This allows BASIC programs to be executed in batch mode using
the SUBMIT facility of CP/M. Such programs should include a
SYSTEM statement (see Chapter 3) to return to CP/M command
level when they have finished, allowing the next program in the
batch stream to execute.

The /F:<number of files> option sets the number of disk files that
may be open at any one time during the execution of a BASIC
program. Each file data block allocated in this fashion requires 166
bytes plus 128 bytes (or the number specified by the /S: option) of
memory. If the /F option is omitted, the number of files defaults to
3. The <number of files> may be entered in a decimal form (default
condition), octal form (preceded by an &O) or hexadecimal form
(preceded by an &H).

The /M:<highest memory location> option sets the highest
memory location that will be used by MBASIC. In some cases, it is
desirable to set the amount of memory well below the FDOS area
to reserve space for assembly language subroutines. In all cases,
<highest memory location> should be below the start of FDOS
(whose address is contained in locations 6 and 7). If the /M option
is omitted, all memory up to the start of FDOS is used.

The /S:<maximum record size> option sets the maximum record
size for use with random files. Any whole number may be specified,
including numbers larger than 128 (the default record size).

10 Microsoft BASIC Reference Manual

Here are a few examples of the different initialization options:

A>MBASIC PAYROLL.BAS Use all memory and three files,
load and execute PAYROLL.BAS.

A>MBASIC INVENT/F:6

A>MBASIC/M:32768

Use all memory and six files,
load and execute INVENT.BAS.

Use first 32K of memory and three
files.

A>MBASIC DATACK/F:2/M:&H9000
Use first 36K of memory, two
files, and execute DATACK.BAS.

To return to CP/M, use the SYSTEM command. SYSTEM closes all
files and then performs a CP/M warm start (reboots CP/M).

Modes of Operation

When Microsoft BASIC is initialized, the prompt “Ok” is displayed.
“Ok” means BASIC is at command level; that is, it is ready to
accept commands. At this point, Microsoft BASIC may be used in
either of two modes: the direct mode or the indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are entered.
Results of arithmetic and logical operations may be displayed
immediately and stored for later use, but the instructions
themselves are lost after execution. This mode is useful for
debugging and for using BASIC as a “calculator” for quick
computations that do not require a complete program.

The indirect mode is used for entering programs. Program lines are
preceded by line numbers and are stored in memory. The program
stored in memory is executed by entering the RUN command.

General Information 11

File Naming Conventions

Disk files are described by their file specification or filespec, for
short. Filespecs are a string expression of the form:

[disk identifier:]<filename>[.filename extension]

The disk identifier instructs BASIC where to look for the file, and
the filename tells BASIC which file to look for. The filename
extension is a label that tells BASIC what type the file is. Filename
is the only required parameter. The disk identifier and filename
extension are optional. Each part of the filespec is discussed in the
following paragraphs.

Filename
The filename may be from one to eight characters in length and
may consist of either uppercase or lowercase alphanumeric
characters, or a combination of both. CP/M will not recognize
filenames longer than eight characters. Examples of valid
filenames:

PAYROLL ACNT4 A2400 Barb

Certain special characters and all control characters cannot be
used as filenames. These characters are:

= ?*<>.,;:[]

CP/M uses these characters in other ways. Therefore, they cannot
be used as filenames.

Filename Extensions
A filename extension identifies the type of a file. For example,
.ASM identifies an assembly language source file, whereas .BAS
identifies a BASIC program source file. Filename extensions in
CP/M are from one to three characters in length and are preceded
by a period. The filename can be made up of letters or alphabetic
characters, or a combination of both. Most often, you will use one

12 Microsoft BASIC Reference Manual

of the de facto standard extensions as shown in the list below.

.ASM Assembly language source file

.BAK Backup file

.BAS BASIC source file

.COM Command file

.DAT Datafile

.DOC Text (document file)

.HEX Intel HEX format object code file

.LIB Library file

.MAC Macro file (usually a subroutine used in
assembly language programs)

.OBJ Machine code (object file)

.PRN Assembly language list file (PRINT file)

.REL Relocatable machine code program file

.TXT Text file

Although other extensions may be used, this list represents the
majority of extensions you will use with CP/M.

The most common extension you will use is .BAS. .BAS is used as
a default extension when LOAD, SAVE, MERGE, or RUN
commands are executed (if no other extension is given and the
filename is less than nine characters long). Some examples of
filename extensions:

APPLE3.TXT ACCReciv.BAS PROGRAM.4 POLS.C12

Disk Drive Identifiers
Disk drives are identified in CP/M by letters. The first drive is the
primary drive and is always identified with the letter A. Other drives
follow in alphabetical order.

Disk drive identifiers precede the filename and consist of the
identifying letter (A-D) and a colon (:). The colon separates the disk
drive identifier from the filename.

If no identifier is specified, CP/M assumes the default drive (unless
otherwise specified, the default drive is always drive A). For
example:

A:PROGRAM.BAS.

General Information 13

Line Format

Program lines in a BASIC program have the following format:

nnnnn BASIC statement [:BASIC statement...] [comment]

Program lines are ended by pressing the <RETURN> key. More
than one BASIC statement may be placed on a line, but each
statement on a line must be separated from the last by a colon.

A Microsoft BASIC program line always begins with a line number
and ends with a carriage return. It may contain a maximum of 255
characters.

It is possible to extend a logical line over more than one physical
line by using Control-J. Control-J lets you continue typing a logical
line on the next physical line without entering <RETURN>.

Line Numbers
Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are stored in
memory. They are also used as references in branching and
editing. Line numbers must be in the range 0 to 65529. A period (.)
may be used in EDIT, LIST, AUTO, and DELETE commands to refer
to the current line.

Character Set

The Microsoft BASIC character set is comprised of alphabetic
characters, numeric characters, and special characters. These are
the characters that BASIC recognizes. There are many others
which can be displayed or printed but have no particular meaning
to BASIC. See Appendix F, “ASCII Character Codes,” for a complete
list of all these characters.

The alphabetic characters in Microsoft BASIC are the uppercase
and lowercase letters of the alphabet.

14 Microsoft BASIC Reference Manua

The numeric characters in Microsoft BASIC are the digits 0 through
9.

The following special characters and terminal keys are recognized
by Microsoft BASIC:

Character Name
Blank

= Equal sign or assignment symbol
+ Plus sign

Minus sign
* Asterisk or multiplication symbol
/ Slash or division symbol
~ Up arrow or exponentiation

symbol
(Left parenthesis
) Right parenthesis

% Percent
Number (or pound) sign
$ Dollar sign
! Exclamation point
[Left bracket
] Right bracket
, Comma

Period or decimal point
Single quotation mark
(apostrophe)

; Semicolon
Colon

& Ampersand
? Question mark
< Less than

General Information 15

Greater than
Backslash or integer division
symbol

At-sign

— Underscore

<ESCAPE> Escapes Edit Mode subcommands.
(See Chapter 3)

<TAB> Moves print position to next tab
stop. Tab stops are set every eight
columns.

<RETURN> Terminates input of a line.

Control Characters
The following control characters are used in Microsoft BASIC:

Control Character Description
Control-A Enters Edit Mode on the line being typed.

Control-B Backslash.

Control-C Interrupts program execution and returns to
BASIC command level.

Control-G Rings the bell (a beep from the speaker) at
the console.

Control-H Backspace. Deletes the last character typed.
This is the same as the «- key.

Control-I Tab. Tab stops are set at every eight columns.
Same as

Control-J Line Feed. Moves to the next physical line.

Control-K Right square bracket.

Control-0 Halts program output while execution con­
tinues. A second Control-0 restarts output.

Control-Q Resumes program execution after a Control-S.

Control-R Repeats the line that is currently being typed.

Control-S Suspends program execution.

16 Microsoft BASIC Reference Manua

Control Characters (continued)

Control Character Description
Control-U Deletes the line that is currently being typed.
Control-X Same as Control-U.
Control-Y Permits recovery after pressing RESET.

Reserved Words

Reserved words are words that have special meaning in Microsoft
BASIC. They include all BASIC commands, statements, function
names, and operator names.

You should always separate reserved words from data or other
elements of a BASIC statement with spaces or other special
characters as allowed by the syntax. In addition, reserved words
may not be used for variable names.

A complete list of reserved words is given in Appendix G.

Constants

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks. Examples of string
constants:

“HELLO”
“$25,000.00”
“Number of Employees"

General Information 17

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five types of
numeric constants:

Integer constants Whole numbers between -32768 and
+32767. Integer constants do not
contain decimal points.

Fixed-point
constants

Positive or negative real numbers,
i.e., numbers that contain decimal
points.

Floating-point
constants

Positive or negative numbers repre­
sented in exponential form (similar to
scientific notation). A floating-point
constant consists of an optionally
signed integer or fixed-point number
(the mantissa) followed by the letter
E and an optionally signed integer
(the exponent). The allowable range
for floating point constants is 10'38
to 10+38. Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating-point
constants are denoted by the letter D
instead of E.)

Hex constants Hexadecimal numbers with the prefix
&H. Examples:

&H76
&H32F

Octal constants Octal numbers with the prefix &O
or &. Examples:

&O347
&1234

Single and Double Precision Numeric Constants
Numeric constants may be either single precision or double
precision numbers. Single precision numeric constants are stored

8 Microsoft BASIC Reference Manua

with seven digits of precision and printed with up to six digits.
Double precision numbers are stored with sixteen digits of
precision and printed with up to sixteen digits.

A single precision constant is any numeric constant that has one of
the following properties:

1. Seven or fewer digits
2. Exponential form using E
3. A trailing exclamation point (!)

A double precision constant is any numeric constant that has one
of the following properties:

1. Eight or more digits

2. Exponential form using D
3. A trailing number sign (#)

Single Precision Constants
46.8
-1.09E-06
3489.0
22.5!

Double Precision Constants
345692811
-1.09432 D-06
3489.0#
7654321.1234

Variables

Variables are names which represent values that are used in a
program. As with constants, there are two types of variables:
numeric and string. A numeric variable may be assigned a value
that is a number. A string variable may only be assigned a character
string value. The value of the variable may be assigned by the user
or it may be assigned as the result of calculations in the program. In
either case, the variable must always match the type of data that is
assigned to it.

Before a variable is assigned a value, its value is assumed to be
zero (numeric variables) or null (string variables).

General Information 19

Variable Names
Microsoft BASIC variable names may contain up to 255 characters.
However, only the first 40 characters are significant. The characters
allowed in a variable name are letters, numbers, and the decimal
point. The first character in a variable name must be a letter.
Special type declaration characters are also allowed (see the next
section).

A variable name may not be a reserved word, but embedded
reserved words are allowed. If a variable begins with FN, it is
assumed to be a call to a user-defined function. (See “DEF FN,” in
Chapter 3 for more information on user-defined functions). A
variable name may not be a reserved word with one of the type
declaration characters ($, %, !, #) at the end.

For example,

10 LOG = 8

is illegal, because LOG is a reserved word. Reserved words include
all Microsoft BASIC commands, statements, function names, and
operator names.

Declaring Variable Types
Variable names may declare either a numeric value or a string.
String variable names are written with a dollar sign ($) as the last
character. For example:

A$ = “SALES REPORT.”

The dollar sign is a variable type declaration character; that is, it
“declares” that the variable will represent a string.

Numeric variable names may declare integer, single, or double
precision values. Computations with integer and single precision
variables are less accurate than those with double precision

20 Microsoft BASIC Reference Manua

variables. However, you may want to declare a variable to a lower
precision type because:

1. Variables of higher precision take up more memory space.
This is important if memory space is limited.

2. Arithmetic computation times are longer for higher
precision numbers. A program with repeated calculations
runs faster with integer variables.

The type declaration characters for numeric variables and the
memory requirements (in bytes) to store each variable type are as
follows.

Declaration
Character

Variable
Type

Bytes
Required

0/
/o Integer 2
I Single precision 4
Double precision 8
$ String 3 bytes overhead plus the

present contents of the
string.

The default type for a numeric variable is single precision.

Examples of Microsoft BASIC variable names:

PI# Declares a double precision value.
MINIMUM! Declares a single precision value.
LIMIT% Declares an integer value.
N$ Declares a string value.
ABC Represents a single precision value.

There is a second method by which variable types may be
declared. The BASIC statements DEFINT, DEFSTR, DEFSNG, and
DEFDBL may be included in a program to declare the types for
certain variable names. These statements are described in detail in
the “DEFINT/SNG/DBL/STR” section in Chapter 3.

General Information 21

Array Variables
An array is a group or table of values referenced by the same
variable name. The individual values in an array are called
elements. Array elements are variables. They can be used in any
BASIC statement or function which uses variables. Declaring the
name and type of an array and setting the number of elements in
the array is known as defining or dimensioning the array.

Each array element is referenced by an array variable that is
subscripted with an integer or an integer expression. An array
variable name has as many subscripts as there are dimensions in
the array. For example, V(10) would reference a value in a
one-dimension array, T(1,4) would reference a value in a
two-dimension array, and so on. Note that the array variable T and
the variable T are not the same variable. The maximum number of
dimensions for an array is 255. The maximum number of elements
per dimension is 32767.

Array elements, like numeric variables, require a certain amount of
memory space, depending on the variable type. The memory
requirements to store arrays (in bytes) are as follows.

Element Type
Integer

Single Precision
Double Precision

Bytes
Two per element

Four per element

Eight per element

ERR and ERL Variables
ERR and ERL are special read-only variables that return the error
code and line number associated with an error. Read-only variables
cannot be assigned values.

When an error handling subroutine is entered, the variable ERR
contains the error code for the error, and the variable ERL contains
the number of the line in which the error was detected. The ERR
and ERL variables are usually used in IF...THEN statements (see
Chapter 3) to direct program flow in the error trap routine.

22 Microsoft BASIC Reference Manual

If the statement that caused the error was a direct mode statement,
ERL will contain 65535. To test if an error occurred in a direct
statement, use

IF 65535-ERL THEN ...

Otherwise, use

IF ERR = error code THEN ...

IF ERL = line number THEN ...

If the line number is not on the right side of the relational operator,
it cannot be renumbered by RENUM. Because ERL and ERR are
reserved variables, neither may appear to the left of the equal sign
in a LET (assignment) statement. Microsoft BASIC error codes are
listed in Appendix D.

Type Conversion

When necessary, BASIC will convert a numeric constant from one
type to another. The following rules and examples should be kept
in mind.

1. If a numeric constant of one type is set equal to a numeric
variable of a different type, the number will be stored as the
type declared in the variable name. (If a string variable is
set equal to a numeric value or vice versa, a “Type
mismatch” error occurs.)

10 A% = 23.42
20 PRINT A%
RUN
23

2. During expression evaluation, all of the operands in an
arithmetic or relational operation are converted to the same
degree of prec’sion, i.e., that of the most precise operand.

General Information 23

Also, the result of an arithmetic operation is returned to
this degree of precision.
10 D# = 6#/7# The arithmetic was performed
20 PRINT D# in double precision and the
RUN result was returned in D# as a
.8571428571428571 double precision value.

Note

Both operands must be double precision variables.
If one of the variables is a single precision variable,
then the last eight digits in the result are
meaningless.

10D = 6#/7
20 PRINT D
RUN
.857143

The arithmetic was performed
in double precision (and the
result was returned to D a
single precision variable),
rounded,and printed as a
single precision value.

Logical operators (see the next section) convert their
operands to integers and return an integer result. Operands
must be in the range -32768 to 32767 or an “Overflow”
error occurs.
When a floating-point value is converted to an integer, the
fractional portion is rounded.

10C% = 55.88
20 PRINT C%
RUN
56

If a double precision variable is assigned a single precision
value, only the first seven digits (rounded) of the converted
number will be valid, since only seven digits of accuracy were
supplied with the single precision value. The absolute value
of the difference between the printed double precision
number and the original single precision value will be less

24 Microsoft BASIC Reference Manual

than 6.3E-8 times the original single precision value.

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN
2.04 2.039999961853027

Expressions and Operators

An expression may be a string or numeric constant, a variable, or a
single value obtained by combining a constant and a variable with
an operator.

An operator performs mathematical or logical operations on values.
The operators provided by BASIC may be divided into four
categories:

1. Arithmetic
2. Relational
3. Logical

4. Functional

Arithmetic Operators
The arithmetic operators, in order of operational precedence, are
listed in the following table.

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first.
Inside parentheses, the usual order of operations is maintained.

Operator Operation Sample Expression
Exponentiation X'Y

— Negation -X

*/ Multiplication, Floating­
point division

X*Y
X/Y

Addition, Subtraction X+Y

General Information 25

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression

XY
Z

X + Y
Z

(X2)Y
z

X
X(-Y)

BASIC Expression
X + Y*2

X - Y/Z

X*Y/Z

(X+Y)/Z

(X~2)*Y

X'(Y'Z)

X*(—Y). Two
consecutive op­
erators must be
separated by
parentheses.

Integer Division and Modulo Arithmetic
Two additional operations are available in Microsoft BASIC: integer
division and modulo arithmetic.

Integer division
Integer division is denoted by the backslash (\). The operands are
rounded to integers (must be in the range -32768 to 32767) before
the division is performed, and the quotient is truncated to an
integer. For example:

Ok
10 X = 10\4
20 Y = 25.68\6.99
30 PRINT X;Y
RUN

2 3
Ok

26 Microsoft BASIC Reference Manual

Integer division immediately follows multiplication and
floating-point division in the established order of operational
precedence.

Modulo Arithmetic
Modulo arithmetic is denoted by the operator MOD. Modulo
arithmetic provides the integer value that is the remainder of an
integer division. For example:

10.4 MOD 4 = 2 (10\4 = 2 with a remainder 2)
25.68 MOD 6.99 = 5 (26\7 = 3 with a remainder 5)

Modulo arithmetic immediately follows integer division in the
established order of operational precedence

Overflow and Division by Zero
If, during the evaluation of an expression, a division by zero is
encountered, the “Division by zero” error message is displayed,
machine infinity with the sign of the numerator is supplied as the
result of the division, and execution continues. If the evaluation of
an exponentiation results in zero being raised to a negative power,
the “Division by zero” error message is displayed, positive machine
infinity (the highest number the computer can produce) is supplied
as the result of the exponentiation, and execution continues.

If overflow occurs, the “Overflow” error message is displayed,
machine infinity with the algebraically correct sign is supplied as
the result, and execution continues.

Relational Operators
Relational operators are used to compare two values. The result of
the comparison is either “true” (-1) or “false” (0). This result may be
then used to make a decision regarding program flow (see
“IF... THEN,” Chapters).

General Information 27

Operator Relation Tested Expression
Equality X=Y
Inequality XoY

Less than X<Y

Greater than X>Y
Less than or equal to X<=Y

Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable. See
“LET,” Chapters.)

When arithmetic and relational operators are combined in one
expression, the arithmetic operation is always performed first. For
example, the expression

X+Y < (T-1)/Z

is true if the value of X plus Y is less than the value of T-1 divided
by Z.

IF SIN(X)<OGOTO 1000
IF I MOD J OOTHEN K=K+1

Logical Operators
Logical operators perform tests on multiple relations, bit
manipulations, or Boolean operations. Just as the relational
operators can be used to make decisions regarding program flow,
logical operators can connect two or more relations and return a
true or false value to be used in a decision (see “IF...THEN,”
Chapters). For example:

IF D<200 AND F<4 THEN 80
IF l>10OR KCOTHEN 50
IF NOT PTHEN 100

28 Microsoft BASIC Reference Manual

A logical operator returns a result from a combination of true-false
operands. The result (in bits) is either “true” (not zero) or “false”
(zero). The true-false combinations and the results of a logical
operation are known as truth tables.

There are six logical operators in Microsoft BASIC; they are: NOT
(logical complement), AND (conjunction), OR (disjunction), XOR
(exclusive or), IMP (implication), and EQV (equivalence). Each
operator returns results as indicated in the following truth tables. A
“T” indicates a true, or non-zero, value. “F” indicates a false, or
zero, value. Operators are listed in order of precedence.

In an expression, logical operations are performed after arithmetic
and relational operations.

Table 1. Microsoft BASIC Logical Truth Tables
NOT

X
1
0

NOTX
0
1

AND
X X ANDT
1 1 1
1 0 0
0 1 0
0 0 0

OR
X N/ XOR Y
1 1 1
1 0 1
0 1 1
0 0 0

XOR
X V X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0

General Information 29

Table 1. (Continued)

IMP
X V X IMPY
1 1 1
1 0 0
0 1 1
0 0 1

EQV
X V X EQV Y
1 1 1
1 0 0
0 1 0
0 0 1

How Logical Operators Work
Logical operators convert their operands to sixteen bit, signed,
two’s complement integers in the range -32768 to +32767. (If the
operands are not in this range, an error results.) If both operands
are supplied as 0 or -1, logical operators return 0 or -1. The given
operation is performed on these integers in bits, i.e., each bit of the
result is determined by the corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used
to “mask” all but one of the bits of a status byte at a machine I/O
port. The OR operator may be used to “merge” two bytes to create
a particular binary value. The following examples will help
demonstrate how the logical operators work.

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

63 = binary 111111 and 16 = binary 10000,
so 63 AND 16 = 16.

15 = binary 1111 and 14 = binary 1110, so
15 AND 14= 14 (binary 1110).
-1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8 = 8.
4 = binary 100 and 2 = binary 10, so 4 OR
2 = 6(binary 110).

30 Microsoft BASIC Reference Manual

10OR 10=10

-1 OR -2 = -1

NOTX = -(X+1)

10 = binary 1010, so 10100R 1010= 1010
(10).
-1 = binary 1111111111111111 and 2 =
binary 1111111111111110, so -1 OR -2 =
-1. The bit complement of sixteen zeros is
sixteen ones, which is the two’s complement
representation of -1.
The two’s complement of any integer is the bit
complement plus one.

Functional Operators
A function is used in an expression to call a predetermined
operation that is to be performed on an operand. Microsoft BASIC
has “intrinsic” functions that reside in the system, such as SQR
(square root) or SIN (sine). All of Microsoft BASIC’s intrinsic
functions are described in Chapter 4.

You may also define your own functions (known as “user-defined”)
with the DEF FN statement (see Chapter 3).

String Operations
A string expression is an expression that contains string constant(s)
or string variable(s), or a combination of both (with operators) that
evaluates to a single value.

There are two classes of string operations: concatenation and
functions.

Concatenation
Combining two strings is called concatenation. The plus symbol
(+) is the concatenation operator. For example,

Ok
10 A$—‘FILE”: B$=“NAME”
20 PRINT A$ + B$
30 PRINT “NEW ” + A$ + B$
RUN
FILENAME
NEW FILENAME
Ok

General Information 31

combines the string variables A$ and B$ to produce the value
“FILENAME.”

String Functions
Strings may be compared using the same relational operators that
are used with numbers:

A string function is the same as a numeric function except the
result is a string value. String comparisons are made by taking one
character at a time from each string and comparing the ASCII
codes. If all the ASCII codes are the same, the strings are equal. If
the ASCII codes differ, the lower code number precedes the
higher. If, during string comparison, the end of one string is
reached, the shorter string is said to be smaller. Leading and
trailing blanks are significant. Examples:

“AA”< “AB”
“FILENAME" = “FILENAME”
“X&” >“X#”
“CL ” > “CL”
“kg” >“KG”
“SMYTH” < “SMYTHE”
B$ < “9/12/78” where B$ = “8/12/78”

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison
expressions must be enclosed in quotation marks.

Input Editing

If an incorrect character is entered as a line is being typed, it can
be deleted with Control-H or the <- (backspace) key. Both keys
backspace over a character and erase it. Once a character has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type Control-U
or press (the retype key). A carriage return is executed
automatically after the line is deleted.

32 Microsoft BASIC Reference Manual

To correct program lines in a program that is currently in memory,
simply retype the line using the same line number. BASIC will
automatically replace the old line with the new line.

To delete the entire program that currently resides in memory,
enter the NEW command (see Chapter 3).

Microsoft BASIC has other sophisticated editing facilities that are
part of the EDIT command. EDIT is discussed in Chapter 3.

Error Messages

If BASIC detects an error that terminates program execution, an
error message is printed. For a complete list of Microsoft BASIC
error codes and error messages, see Appendix D.

M

General Information 33»

NM■

■
■
■
■
■
■
n
n
n
n

34 Microsoft BASIC Reference Manual

Microsoft BASIC
Commands and Statements

W:>W:WS*xs<*^^

i

w «Jill 37 AUTO 63 GOSUB.. .RETURN
GOTO
IF... GOTOL_

37
38

CALL
CHAIN

64
65

41
41

CLEAR
CLOSE

65
67

IF... THEN [...ELSE]
INPUTJ i

|
42
43
A A

COMMON
CONT

69
71

INPUT#
KILL

L J
44
46
47
47
47

DATA
DEF FN
DEFDBL
DEFINT
DEFSNG

72
72
73
74
76

LET
LINE INPUT
LINE INPUT#
LIST
LLIST

I

47
48

DEFSTR
DEF USR

76
77

LOAD
LPRINT

49
49

DELETE
DIM

77
71

LPRINT USING
LSET/RSET

i

i

50
55
56
56
58

EDIT
END
ERASE
ERROR
FIELD

78
79
80
81
81

MERGE
MID$
NAME
NEW
ON ERROR GOTO
ON.. .GOSUB
ON... GOTO

i:

i

1
i
■

1
59
60

FILES
FOR.. .NEXT

82
82’ 1 62 GET 83 OPEN

J
ii

UMMMWWKWWW&

-"H

Commands and Statements 35

36 Microsoft BASIC Reference Manual

3
Microsoft BASIC
Commands and Statements

Microsoft BASIC commands and statements are described in
this chapter. Each description consists of the following
components:

Syntax Shows the correct syntax for the instruction.

Purpose Tells what the instruction is used for.
Remarks Describes in detail how the instruction is used.

Example Shows sample programs or program segments
that demonstrate the use of the instruction.

Syntax notation for all commands and statements is given in
Chapter 1. Numeric and string arguments (where applicable) have
been abbreviated as follows:

X and Y

I and J
X$ and Y$

Represent any numeric expressions.

Represent integer expressions.

Represent string expressions.

If a floating-point value is supplied where an integer is required,
BASIC will round the fractional portion and use the resulting
integer.

Commands and Statements 37

AUTO

Syntax

Purpose

Remarks

Example

CALL

Syntax

Purpose

AUTO [cline number>[,<increment>]]

To generate a line number automatically after every
carriage return.

AUTO begins numbering at cline number>and
increments each subsequent line number by
<increment>. The default for both values is 10. If
cline number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the number
to warn the user that any input will replace the
existing line. However, typing a carriage return
immediately after the asterisk will save the line and
generate the next line number.

AUTO is terminated by typing Control-C. The line in
which Control-C is typed is not saved. After
Control-C is typed, BASIC returns to command
level.

AUTO 100,50 Generates line numbers 100,
150, 200....

AUTO Generates line numbers 10, 20,
30, 40....

CALL <variable name>[(<argument list>)]

To call an assembly language subroutine.

38 Microsoft BASIC Reference Manual

Remarks The CALL statement is one way to transfer program
flow to an external subroutine. (See also the USR
function).

<variable name> contains an address that is the
starting point in memory of the subroutine.

<variable name> may not be an array variable
name.
<argument Iist> contains the arguments that are
passed to the external subroutine. <argument I ist>
may contain only variables.

Example Ok
110 MYROUT=&HDOOO
120 CALL MYROUT(LJ.K)

CHAIN

Syntax CHAIN [MERGE] <filespec>[,[<line number exp>]
[,ALL][,DELETE<m-n>]]

Purpose To call a program and pass variables to it from the
current program.

Remarks <filespec> contains the name of the program called.
For example,

CHAIN “A:PROG1.BAS”

calls the BASIC program PROG1 from disk drive A.
If no other options are included by the user, CHAIN
will load the called program and execute it
beginning at the first line.

The MERGE option of the CHAIN statement merges

Commands and Statements 39

the called overlay into the currently running
program. That is, the program lines of the overlay
are inserted into the current program in sequential
order beginning at the point specified by
<1 ine number exp>. The called program must be an
ASCII file if it is to be merged. Example 1 in this
section shows how the MERGE option is used.

Note

The CHAIN statement with MERGE option
leaves the files open and preserves the
current OPTION BASE setting.

When using the MERGE option, user-defined
functions should be placed before any CHAIN
MERGE statements in the program. Otherwise, the
user-defined functions will be undefined after the
merge is complete.

If you choose not to use MERGE, CHAIN will clear
the effect of ON ERROR GOTO, disallow program
continuation, reset all DATA pointers, and close all
files. User-defined functions are preserved only if
the corresponding DEF FN statements are not
altered by MERGE. CHAIN without MERGE does
not preserve variable types or user-defined
functions for use by the chained program. That is,
any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEF
FN statements containing shared variables must be
restated in the chained program.

cline number exp> is the line number (or an
expression that evaluates to a line number) in the
called program. It is the starting point for execution
of the called program. If it is omitted, execution
begins at the first line.

Note

<line number exp> is not affected by a
RENUM command.

40 Microsoft BASIC Reference Manual

ALL is an option that allows all variables to pass
from the current program to the overlay. If ALL is
omitted, COMMON statements must be used to
pass variables.

If the ALL option is used, every variable in the
current program is passed to the overlay. If you do
not use ALL, a COMMON statement must be used
to pass variables to the overlay. With COMMON, you
may specify the variables to be passed. Array
variables may be used by appending parentheses ()
to the variable list. Note that the same variable
cannot appear in more than one COMMON
statement.

DELETE<m-n> is the option that deletes a range of
lines in the original program after the overlay has
been executed, m is the beginning line number and
n is the last line number of the overlay range.

Example 10 REM THIS PROGRAM DEMONSTRATES
CHAINING WITH THE VARIABLES PASSED
20 REM IN COMMON. SAVE THIS PROGRAM
ON THE DISK AS “PROG1”.
30 COMMON A$,B$
40 INPUT “ENTER A STRING OF NOT MORE
THAN 255 CHARACTERS. “,A$
50 B$ = “ "
60 CHAIN “PROG2”
70 PRINT “HERE IS YOUR STRING BACK,
REVERSED!”
80 PRINT B$
90 END

10 REM SAVE THIS PROGRAM ON THE DISK
AS “PROG2”
20 COMMON A$,B$
30 FOR N% = 1 TO LEN(A$)
40 l% = LEN(A$) - N% + 1
50 B$ = B$ + MID$(A$, l%, 1)
60 NEXT N%
70 CHAIN “PROG1”, 70
80 END

Commands and Statements 41

CLEAR

Syntax

Purpose

Remarks

Examples

CLOSE

Syntax

Purpose

CLEAR [,[<expression1>][,<expression2>]]

To set all numeric variables to zero, all string
variables to null, and close all open files; and,
optionally, to set the end of memory and the amount
of stack space.

<expression1> is a memory location which, if
specified, sets the highest location available for use
by BASIC.

<expression2> sets aside stack space for BASIC.
The default is 256 bytes or one-eighth of the
available memory, whichever is smaller.

BASIC allocates string space dynamically. An “Out
of string space” error occurs only if there is no free
memory left for BASIC to use.

CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

CLOSE[[#]<file number>[,[#]<file number ...>]]

To conclude I/O to a disk file. CLOSE may be used
either as a command or a statement.

42 Microsoft BASIC Reference Manual

Remarks <file number> is the number under which the file
was opened. A CLOSE with no arguments closes all
open files.

The association between a particular file and file
number terminates upon execution of a CLOSE. The
file may then be reopened using the same or a
different file number; likewise, that file number may
now be reused to OPEN any file.

A CLOSE for a sequential output file writes the final
buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does not
close disk files.)

Examples CLOSE #1

CLOSE 2, 3

COMMON

Syntax COMMON <list of variables>

Purpose To pass variables to a chained program.

Remarks The COMMON statement is used in conjunction
with the CHAIN statement. COMMON statements
may appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending “()” to the variable name. If all
variables are to be passed, use CHAIN with the ALL
option and omit the COMMON statement.

Commands and Statements 43

H
n

■

-
n

n

The <1 ist of variables> may include any variable
type, including array variables.

Example 100 COMMON A,B,C,D(),G$
110 CHAIN “PROG3”,10

CONT

Syntax CO NT

Purpose To continue program execution after a Control-C has
been typed or a STOP or END statement has been
executed.

Remarks Execution resumes at the point where the break
occurred. If the break occurred after a prompt from
an INPUT statement, execution continues with the
reprinting of the prompt (“?” or prompt string).

CONT is usually used in conjunction with STOP for
debugging. When execution is stopped, intermediate
values may be examined and changed using direct
mode statements. Execution may be resumed with
CONT or a direct mode GOTO, which resumes
execution at a specified line number. CONT may be
used to continue execution after an error occurs.

CONT is invalid if the program has been edited
during the break.

44 Microsoft BASIC Reference Manual

Example

DATA

Syntax

Purpose

Remarks

Ok
10 INPUT A,B,C
20 K=A ~ 2*5.3:L=B ~ 3/.26
30 STOP
40 M~C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L
30.7692

Ok
CONT

115.9
Ok

DATA <l ist of constants>

To store the numeric and string constants that are
accessed by the program’s READ statement(s).

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA statement
may contain as many constants as will fit on a line
(separated by commas). Any number of DATA
statements may be used in a program. The READ
statements access the DATA statements in order (by
line number) and the data contained therein may be
thought of as one continuous list of items, regardless
of how many items are on a line or where the lines
are placed in the program.

<l ist of constants> may contain numeric constants
in any format, i.e., fixed-point, floating-point or
integer. (No numeric expressions are allowed in the
list.) String constants in DATA statements must be
surrounded by double quotation marks only if they

Commands and Statements 45

Example 1

contain commas, colons, or significant leading or
trailing spaces. Otherwise, quotation marks are not
needed.

The variable type (numeric or string) given in the
READ statement must agree with the corresponding
constant in the DATA statement.

DATA statements may be reread from the beginning
by using the RESTORE statement.

80 FOR 1=1 TO 10
90 READ A(l)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

Example 2

This program segment reads the values from the
DATA statements into the array A. After execution,
the value of A(1) will be 3.08, and so on.

Ok
10 PRINT “CITY”, “STATE”, “ ZIP”
20 READ C$,S$,Z
30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program reads string and numeric data from the
DATA statement in line 30.

46 Microsoft BASIC Reference Manual

DEF FN

Syntax

Purpose

Remarks

DEF FN<name>[(<parameter list>)]=
<function definition>

To define and name a function written by the user.

<name> is any legal variable name. The name must
be preceded by FN and becomes the name of the
function.

<parameter list> is comprised of those variable
names in the function definition that are to be
replaced when the function is called. The items in
the list are separated by commas.

The variables in the parameter list represent, on a
one-to-one basis, the argument variables or values
that will be given in the function call.

<function definition> is an expression that performs
the operation of the function. It is limited to one
line. Variable names that appear in this expression
serve only to define the function; they do not affect
program variables that have the same name.

A variable name used in a function definition may or
may not appear in the parameter list. If it does, the
value of the parameter is supplied when the
function is called. Otherwise, the current value of
the variable is used.

User-defined functions may be numeric or string. If
a type is specified in the function name, the value of
the expression is forced to that type before it is
returned to the calling statement. If a type is
specified in the function name and the argument
type does not match, a ' Type mismatch” error
occurs.

Commands and Statements 47

A DEF FN statement must be executed before the
function it defines may be called. If a function is
called before it has been defined, an “Undefined
user function” error occurs. DEF FN is illegal in
direct mode.

Example

410 DEF FNAB(X,Y)=X " 3/Y " 2
420 T=FNAB(I,J)

Line 410 defines the function FNAB. The function is
called in line 420.

DEFINT/SNG/DBL/STR

Syntax DEF<type> <range(s) of letters>

Purpose

Remarks

To declare variable types as integer, single
precision, double precision, or string.

<type> is a variable type (INT, SNG, DBL,
or STR) and <range of letters> is the variable
name(s).

A DEF statement declares that the variable names
beginning with the letter(s) specified will assume
that variable type. However, a type declaration
character always takes precedence over a DEF
statement in the typing of a variable.

If no type declaration statements are encountered,
BASIC assumes that all variables without
declaration characters are single precision
variables.

48 Microsoft BASIC Reference Manual

Examples 10 DEFDBL L-P

10 DEFSTRA

All variables beginning with the
letters L, M, N, O, and P will be
double precision variables.

All variables beginning with the
letter A will be string variables.

10 DEFINT l-N.W-Z
All variables beginning with the
letters I, J, K, L, M, N, W, X, Y, Z
will be integer variables.

DEF USR

Syntax

Purpose

Remarks

DEF USR[<digit>]=<integer expression>

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed.

The value of cinteger expression> is the starting
address of the USR routine (see Appendix C, “BASIC
Assembly Language Subroutines ').

Any number of DEF USR statements may appear in
a program to redefine subroutine starting addresses,
thus allowing access to as many subroutines as
necessary.

Commands and Statements 49

Example

200 DEF USR0=24000
210 X=USRO(Y~ 2/2.89)

Syntax DELETE[<line number>][-cline number>]

Purpose To delete program lines.

Remarks BASIC always returns to command level after
DELETE is executed. If cline number> does not
exist, an “Illegal function call” error occurs.

Examples DELETE 40

DELETE 40-100

DELETE-40

Deletes line 40.

Deletes lines 40 through 100,
inclusive.

Deletes all lines up to and
including line 40.

DIM

Syntax

Purpose

DIM clist of subscripted variables>

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

Remarks If an array variable name is used without a DIM
statement, the maximum value of its subscript(s) is

50 Microsoft BASIC Reference Manua

assumed to be 10. If a subscript is used that is
greater than the maximum specified, a “Subscript
out of range” error occurs. The minimum value for a
subscript is always zero, unless otherwise specified
with the OPTION BASE statement.

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

Example Ok
10 DIM A(20)
20 FOR l-OTO 20
30 READ A(l)
40 NEXT I

EDIT

Syntax

Purpose

Remarks

EDIT cline number>

To enter the edit mode at a specified line.

In edit mode, it is possible to edit portions of a line
without retyping the entire line. Upon entering edit
mode, BASIC types the line number of the line to be
edited, then it types a space and waits for an edit
mode subcommand.

Edit mode subcommands

Edit mode subcommands are used to move the
cursor or to insert, delete, replace, or search for text
within a line. The subcommands are not echoed.
Most of the edit mode subcommands may be
preceded by an integer which causes the command
to be executed that number of times. When a
preceding integer is not specified, it is assumed to
be 1.

Commands and Statements 51

Edit mode subcommands may be categorized
according to the following functions:

1. Moving the cursor

2. Inserting text
3. Deleting text

4. Finding text
5. Replacing text

6. Ending and restarting edit mode
7. Syntax errors

Descriptions of each category follow.

Note

In the descriptions that follow, <ch>
represents any character, <text> represents
a string of characters of arbitrary length, /'
represents an optional integer (the default
is 1), and $ represents the <ESCAPE> key.

Moving the Cursor

Space Use the space bar to move the cursor to
the right. /'Space moves the cursor i
spaces to the right. Characters are
printed as you space over them.

Control-H In edit mode, /Control-H moves the
cursor / spaces to the left. Characters are
printed as you backspace over them.

<- <- or backspace moves the cursor to the
left. The cursor moves over the
characters already printed, but does not
delete them.

52 Microsoft BASIC Reference Manual

Inserting Text

Deleting Text

Ktext>$ inserts <text> at the current
cursor position. The inserted characters
are printed on the screen. To terminate
insertion, type <ESCAPE>. If
<RETURN> is typed during an Insert
command, the effect is the same as
typing <ESCAPE> and then
<RETURN>. During an Insert command,
Control-H, < <- >, or the Underscore
key may be used to delete characters to
the left of the cursor. Control-H will
move the cursor over the characters as
you backspace over them. <SHIFT,
Control-\ > and Underscore (when
pressed simultaneously) will print an
Underscore for each character you
delete. If an attempt is made to insert a
character that will make the line longer
than 255 characters, an audio beep
(Control-G) sounds and the character is
not printed.
The X subcommand is used to extend
the line. X moves the cursor to the end of
the line, enters the insert mode, and
allows insertion of text as if an insert
command had been given. When you are
finished extending the line, type
<ESCAPE> or <RETURN>.

/D deletes /’ characters to the right of the
cursor. The deleted characters are
echoed between backslashes, and the
cursor is positioned to the right of the
last character deleted. If there are fewer
than /' characters to the right of the
cursor, /D deletes the remainder of the
line.

■ ■ : '

Commands and Statements 53

H H deletes all characters to the right of
the cursor and then automatically enters
the insert submode. H is useful for
replacing statements at the end of a line.

Finding Text

S The subcommand /S<ch> searches for
the /th occurrence of <ch> and
positions the cursor before it. The
character at the current cursor position
is not included in the search. If <ch> is
not found, the cursor will stop at the end
of the line. All characters passed over
during the search are printed.

K The subcommand /K<ch> is similar to
/S<ch>, except all the characters passed
over in the search are deleted. The
cursor is positioned before <ch>, and
the deleted characters are enclosed in
backslashes.

Replacing Text
C The subcommand C<ch> changes the

next character to <ch>. If you wish to
change the next / characters, use the
subcommand /C, followed by i
characters. After the /th new character is
typed, you exit the change submode and
return to edit mode.

Ending and Restarting Edit Mode
Control-A To enter edit mode on the line you are

currently typing, type Control-A. BASIC
responds with a return, an exclamation
point (!), and a space. The cursor will be
positioned at the first character in the
line. Proceed by typing an edit mode
subcommand.

54 Microsoft BASIC Reference Manua

Note

If you have just entered a line, and wish
to go back and edit it, the command
“EDIT will enter edit mode at the
current line. (The line number symbol
always refers to the current line.)

RETURN> Typing <RETURN> prints the remainder
of the line, saves the changes you made,
and exits edit mode.
The E subcommand has the same effect
as <RETURN>, except the remainder of
the line is not printed.

The Q subcommand returns to BASIC
command level without saving any of the
changes that were made to the line
during edit mode.

The L subcommand lists the remainder
of the line (saving any changes made so
far) and repositions the cursor at the
beginning of the line, while still in edit
mode. L is usually used to list the line
when first entering edit mode.
The A subcommand lets you begin
editing a line over again. It restores the
original line and repositions the cursor at
the beginning.

Note

If BASIC receives an unrecognizable
command or illegal character while in
edit mode, it sounds a beep (Control-G)
and the command or character is ignored.

Commands and Statements 55

Syntax Errors

When a syntax error is encountered during execution of a
program, BASIC automatically enters edit mode at the line
that caused the error.
For example:

10 K = 2(4)
RUN
?Syntax error in 10
10

When you finish editing the line and press <RETURN> (or
the E subcommand), BASIC reinserts the line, which causes
all variable values to be lost. To preserve the variable values
for examination, first exit edit mode with the Q subcommand.
BASIC will return to command level, and all variable values
will be preserved.

END

Syntax END

Purpose To terminate program execution, close all files and
return to command level.

Remarks END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a “BREAK”
message to be printed. An END statement at the
end of a program is optional. BASIC always returns
to command level after an END is executed.

Example 520 IF K>1000THEN END ELSE GOTO 20

56 Microsoft BASIC Reference Manual

ERASE

Syntax

Purpose

Remarks

Example

ERROR

Syntax

Purpose

Remarks

ERASE <array variable> [<array variable>...] __

To eliminate arrays from a program.

Arrays may be redimensioned after they are erased,
or the previously allocated array space in memory
may be used for other purposes. If an attempt is
made to redimension an array without first erasing
it, a “Redimensioned array” error occurs.

10 DIM B(5)

450 ERASE A,B
460 DIM B(99)

M

ERROR <integer expression>

(1) To simulate the occurrence of a BASIC error; or,
(2) to allow error codes to be defined by the user.

<integer expression> must be a value between 0
and 255. If the value of <integer expression> equals
an error code already in use by BASIC (see
Appendix D), the ERROR statement will simulate
the occurrence of that error, and the corresponding
error message will be printed. (See Example 1.)

Commands and Statements 57

Example 1

Example 2

To define your own error code, use a value that is
greater than any used by the Microsoft BASIC error
codes. (It is preferable to use the highest available
values, so compatibility may be maintained when
more error codes are added to Microsoft BASIC.)
This user-defined error code may then be
conveniently handled in an error trap routine. (See
Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC
responds with the message “Unprintable error.”
Execution of an ERROR statement for which there
is no error trap routine causes an error message to
be printed and execution to halt.

Ok
10 S = 10
20 T = 5
30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

Or, in direct mode:

Ok
ERROR 15
String too long
Ok

(You type this line.)
(BASIC types this line.)

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET”;B
130 IF B >5000 THEN ERROR 210

58 Microsoft BASIC Reference Manua

FIELD

Syntax

Purpose

Remarks

400 IF ERR = 210 THEN PRINT
“HOUSE LIMIT IS $5000”
410 IF ERL= 130THEN RESUME 120

Note

Refer to the section entitled “ERR and ERL
Variables” for more information on ERR and
ERL.

FlELD[#]<file number>, <field width> AS <string
variable>...

To allocate space for variables in a random file
buffer.

A FIELD statement must be executed to get data
out of a random buffer after a GET statement or to
enter data before a PUT statement.

The FIELD statement contains three user entries.
<file number> is the number under which the file
was opened. <field width> is the number of
characters to be allocated to <string variable--.
<string variable> is a string variable that will be
used for random file access.

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was opened (see the
OPEN command in this chapter). Otherwise, a “Field
overflow” error occurs. (The default record length is
128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that have
been executed are in effect at the same time.

Commands and Statements 59

II
II
■
■
■
■
■
■

You may not use a fielded variable name in an
INPUT or LET statement. Once a variable name is
fielded, it points to the correct place in the random
file buffer. If a subsequent INPUT or LET statement
with that variable name is executed, the variable's
pointer is moved to string space.

Example 1 FIELD 1,20 AS N$, 10 AS ID$, 40 AS ADDS

Allocates the first 20 positions (bytes) in the random
file buffer to the string variable N$, the next 10
positions to IDS, and the next 40 positions to ADDS.
FIELD does NOT place any data in the random file
buffer. (See LSET/RSET and GET.)

Example 2 10 OPEN ‘ADEPT” AS 1
20 FIELD #1,30 AS DEPTNAMES, 30 AS LOCAS,
30 GET #1
40 D$ = DEPTNAMES
50 PRINT D$, DEPTNAMES, LOCAS

FILES

Syntax

Purpose

Remarks

Fl LES[<filespec>]

To print the names of files residing on the current
disk.

<filespec> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the first
character of the filename or extension will match
any file or any extension.

If a disk drive is specified as part of the <filespec>,
then files under the specified filename in that disk
drive are listed. Otherwise, the current or default
drive is used.

60 Microsoft BASIC Reference Manual

Examples

FOR..

Syntax

Purpose

Remarks

FILES
FILES “*.BAS”
FILES “B:*.*”
FILES “TEST?.BAS”

.NEXT

FOR <variable>=<x> TO <y> [STEP <z>]

NEXT [<variable>][,<variable>...]

To allow a series of instructions to be performed in a
loop a given number of times.

<variable> is used as a counter and <x>, <y>, and
<z> are numeric expressions. The first numeric
expression, <x>, is the initial value of the counter.
The second numeric expression, <y>, is the final
value of the counter.

The program lines following the FOR statement are
executed until the NEXT statement is encountered.
Then the counter is incremented by the amount
specified by STEP. A check is performed to see if
the value of the counter is now greater than the final
value of <y>. If it is not greater, BASIC branches
back to the statement after the FOR statement and
the process is repeated. If it is greater, execution
continues with the statement following the NEXT
statement. This is a FOR ... NEXT loop. If STEP is
not specified, the increment is assumed to be one. If
STEP is negative, the final value of the counter is
set to be less than the initial value. The counter is
decremented each time through the loop, and the
loop is executed until the counter is less than the
final value.

Commands and Statements 61

The body of the loop is skipped if the initial value of
the loop times the sign of the step exceeds the final
value times the sign of the step.

Nested Loops

FOR ... NEXT loops may be nested; that is, a
FOR ... NEXT loop may be placed within the context
of another FOR ... NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the outside
loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them.

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding
FOR statement, a “NEXT without FOR” error
message is issued and execution is terminated.

Example 1 Ok
10 K=10
20 FOR 1=1 TO K STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN

1 20
3 30
5 40
7 50
9 60

Ok

Example 2 Ok
10 J=0
20 FOR 1=1 TO J
30 PRINT I
40 NEXT I

62 Microsoft BASIC Reference Manual

In this example, the loop does not execute because
the initial value of the loop exceeds the final value.

Example 3 Ok
10 l=5
20 FOR 1=1 TO I+5
30 PRINT I;
40 NEXT
RUN

1 23456 7 89 10
Ok

In this example, the loop executes ten times. The
final value for the loop variable is always set before
the initial value is set.

GET

Syntax GET [#]<file number>[,<record number>]

Purpose To read a record from a random disk file into a
random buffer.

Remarks <file number> is the number under which the file
was opened and <record number> is the number of
the record to be read. The range is 1 to 32767.

If <record number> is omitted, the next record
(after the last GET) is read into the buffer. The
largest possible record number is 32767.

Note

After a GET statement, INPUT# and LINE
INPUT# may be executed to read characters
from the random file buffer.

Commands and Statements 63

Example

GOSUB

Syntax

Purpose

Remarks

Ok
10 OPEN “B: VENDOR AS #1
20 FIELD #1,20 AS VENDNAME$, 30 AS ADDR$,

35 AS CITY$
30 GET #1
40 PRINT VENDNAME$, ADDR$, CITY$

.. RETURN

GOSUB cline number>

RETURN

To branch to and return from a subroutine.

cline number> is the first line of the subroutine.
A subroutine may be called any number of times in a
program, and a subroutine may be called from
within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause
BASIC to branch back to the statement following the
most recent GOSUB statement. A subroutine may
contain more than one RETURN statement, should
logic dictate a return at different points in the
subroutine. Subroutines may appear anywhere in
the program, but it is recommended that the
subroutine be readily distinguishable from the main
program.

To prevent inadvertent entry into the subroutine, the
GOSUB statement may be preceded by a STOP,
END, or GOTO statement that directs program
control around the subroutine.

64 Microsoft BASIC Reference Manual

To prevent stack overflow, a subroutine called by a
GOSUB statement must always exit through a
RETURN statement.

You may use an ON ... GOSUB statement to branch
to different subroutines based on the result of an
expression.

Example Ok
10 GOSUB 40
20 PRINT “BACK FROM SUBROUTINE”
30 END
40 PRINT “SUBROUTINE”;
50 PRINT “IN”;
60 PRINT “PROGRESS”
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

GOTO

Syntax GOTO <line number>

Purpose To branch unconditionally out of the normal program
sequence to a specified line number.

Remarks If <line number> is an executable statement, that
statement and those following are executed. If it is a
nonexecutable statement, execution proceeds at
the first executable statement encountered after
cline number>.

Commands and Statements 65

Example Ok
10 READ R
20 PRINT “R =”;R,
30 A = 3.14*R"2
40 PRINT “AREA=”;A
50 GOTO 10
60 DATA 5,7,12
Ok
RUN
R = 5 AREA = 78.5
R = 7 AREA =153.86
R = 12 AREA = 452.16
?Out of data in 10
Ok

IF... THEN [... ELSE] and IF... GOTO

Syntax

Syntax

Purpose

Remarks

IF <expression>THEN <clause>
[ELSE <clause>]

IF <expression> GOTO <line number>
[ELSE <clause>]

To make a decision regarding program flow based
on the result returned by an expression.

<expression> is a unique expression setting the
conditions for the IF statement to make a decision
on which program path to follow. <clause> may be a
BASIC statement or statements, or a line number to
branch to.

If the result of <expression> is not zero, the THEN
or GOTO clause is executed. THEN may be followed
by either a line number for branching or byone or
more statements to be executed. GOTO is always
followed by a line number. If the result of

Microsoft BASIC Reference Manual

<expression> is zero, the THEN or GOTO clause is
ignored and the ELSE clause, if present, is
executed. Execution continues with the next
executable statement. A comma is allowed before
THEN.

Nesting of IF Statements

IF ... THEN ... ELSE statements may be nested.
Nesting is limited only by the length of the line. For
example,

IF X>Y THEN PRINT “GREATER” ELSE IF Y>X
THEN PRINT “LESS THAN” ELSE PRINT “EQUAL”

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example,

IF A=B THEN IF B=C THEN PRINT “A=C”
ELSE PRINT "AOC”

will not print “A<>C” when AoB.

If an IF ... THEN statement is followed by a line
number in the direct mode, an “Undefined line”
error results unless a statement with the specified
line number had previously been entered in indirect
mode.

Note

When using IF to test equality for a value
that is the result of a floating point
computation, remember that the internal
representation of the value may not be
exact. Therefore, the test should be against
the range over which the accuracy of the
value may vary. For example, to test a

Commands and Statements 67

n
Bl
H
N
■

Example 1

Example 2

computed variable A against the value 1.0,
use:

IF ABS (A-1.0)<1.0E-6THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than 1 .OE-6.

200 IF I THEN GET#1,I

This statement GETs record number I if I is not zero.

100 IF(K20)*(l>10) THEN DB=1979-1 :GOTO 300
110 PRINT “OUT OF RANGE”

In this example, a test determines if I is greater than
10 and less than 20. If I is in this range, DB is
calculated and execution branches to line 300. If I is
not in this range, execution continues with line 110.

Example 3 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to
the screen or the line printer, depending on the
value of a variable (IOFLAG). If IOFLAG is zero,
output goes to the line printer; otherwise, output
goes to the screen.

INPUT

Syntax INPUT[;][<“prompt string”>;]<variable list>

Purpose To allow input from the keyboard during program
execution.

68 Microsoft BASIC Reference Manual

Remarks When an INPUT statement is encountered, program
execution pauses and a question mark is displayed
to indicate the program is waiting for data. If
<“prompt string”> is included, the string is
displayed before the question mark. The required
data is then entered at the keyboard.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark. For
example, the statement INPUT “ENTER
BIRTHDATE”,B$ will display the prompt with no
question mark.

If INPUT is immediately followed by a semicolon,
then the <RETURN> typed by the user to input data
does not echo a carriage return/linefeed sequence.

The data that is entered is assigned to the
variable(s) given in cvariable I ist>. The number of
data items supplied must be the same as the
number of variables in the list. Data items are
separated by commas.

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is input
must agree with the type specified by the variable
name. (Strings input to an INPUT statement need
not be surrounded by quotation marks.)

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage “?Redo
from start” to be printed. No assignment of input
values is made until an acceptable response is
given.

Commands and Statements 69

Examples

INPUT#

Syntax

Purpose

Remarks

Ok
10 INPUTX
20 PRINT X “SQUARED IS” X~2
30 END
RUN
? 5 (The 5 was typed in by the user in response

to the question mark.)
5 SQUARED IS 25
Ok

Ok
10 Pl=3.14
20 INPUT “WHAT IS THE RADIUS”;R
30 A=PI*R"2
40 PRINT “THE AREA OF THE CIRCLE IS”;A
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?

INPUT#<file number>,<variable list>

To read data items from a sequential disk file and
assign them to program variables.

<file number> is the number used when the file was
opened for input. <variable I ist> contains the
variable names that will be assigned to the items in
the file. (The variable type must match the type
specified by the variable name.)

70 Microsoft BASIC Reference Manual

The data items in the file should appear just as they
would if data were being typed in response to an
INPUT statement. Unlike INPUT, no question mark
is printed with INPUT#.

With numeric values, leading spaces, carriage
returns and line feeds are ignored. The first
character encountered that is not a space, carriage
return or line feed is assumed to be the start of a
number. The number terminates on a space,
carriage return, line feed, or comma.

If BASIC is scanning the sequential data file for a
string item, leading spaces, carriage returns, and
line feeds are also ignored. The first character
encountered that is not a space, carriage return, or
line feed is assumed to be the start of a string item.
If this first character is a quotation mark (“), the
string item will consist of all characters read
between the first quotation mark and the second.
Thus, a quoted string may not contain a quotation
mark as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage return, or line feed (or after 255 characters
have been read). If end of file is reached when a
numeric or string item is being INPUT, the item is
terminated.

Example Ok
10 OPEN “I”,#1,“DATA”
20 INPUT#1,N$,D$,H$
30 IF RIGHT$(H$,2)=“78” THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

Commands and Statements 71

KILL

Syntax

Purpose

Remarks

Example

KILL <filespec>

To delete a file from disk.

KILL is used for all types of disk files: program files,
random data files, and sequential data files.

If a KILL statement is given for a file that is currently
OPEN, a “File already open” error occurs.

Ok
10 ON ERROR GOTO 2000
20 OPEN “I”,#1,“NAMES”
30 REM IF FILE EXISTS, WRITE IT TO “COPY”
40 OPEN "O”,#2,“COPY”
50 IF EOF(1)THEN 90
60 LINE INPUT#1,A$
70 PRINT#2,A$
80 GOTO 50
90 CLOSE #1
100 KILL “NAMES”
110 REM ADD NEW ENTRIES TO FILE
120 INPUT “NAME”;N$
130 IF N$=“” THEN 200 ’CARRIAGE RETURN EXITS
INPUT LOOP
140 LINE INPUT “ADDRESS? “;A$
150 LINE INPUT “BIRTHDAY? “;B$
160 PRINT#2,N$
170 PRINT#2,A$
180 PRINT#2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO “NAMES”
210 NAME “COPY” AS “NAMES”
2000 IF ERR=53 AND ERL=20 THEN OPEN
“O”,#2,“COPY”:RESUME 120
2010 ON ERROR GOTO 0

See also Appendix B, “Microsoft BASIC Disk I/O.”

72 Microsoft BASIC Reference Manual

LET

Syntax [LET] <variable>=<expression>

Purpose To assign the value of an expression to a variable.

Remarks Notice the word LET is optional; i.e., the equal sign
is sufficient when assigning an expression to a
variable name.

Attempting to assign a numeric value to a string
variable or a string value to a numeric variable will
result in a “Type mismatch” error.

Example 110 LET D=12
120 LET E=12~2
130 LET F=12 "4
140 LETSUM=D+E + F

or

110 D=12
120 E -12'2
130 F=12~4
140 SUM=D+E + F

LINE INPUT

Syntax LINE INPUT[;][<“prompt string”>;]
<string variable>

Commands and Statements 73

Purpose To input an entire line (up to 254 characters) to a
string variable, without the use of delimiters.

Remarks The <“prompt string”> is a string literal that is
displayed on the screen before input is accepted. A
question mark is not printed unless it is part of the
prompt string.

<string variable> is the input. All input from the end
of the prompt to the <RETURN> is assigned to
<string variable. However, if a line feed/carriage
return sequence (this order only) is encountered,
both characters are echoed, but the carriage return
is ignored, the line feed is put into <string variable-1,
and data input continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a carriage
return/line feed sequence at the keyboard.

A LINE INPUT may be escaped by typing Control-C.
BASIC will return to command level and type Ok.
Typing CONT resumes execution at the LINE
INPUT.

Example See the example in the following section (LINE
INPUT#).

LINE INPUT #

Syntax LINE INPUT#<file number>,<string variable>

Purpose To read an entire line (up to 254 characters), without
delimiters, from a sequential disk data file to a string
variable.

74 Microsoft BASIC Reference Manual

Remarks

LIST

Syntax 1

Syntax 2

Purpose

<file number> is the number under which the file
was opened and <string variable> is the variable
name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential file up
to a <RETURN>. It then skips over the line
feed/carriage return sequence. The next LINE
INPUT# reads all characters up to the next
<RETURN>. (If a line feed/carriage return
sequence is encountered, it is preserved.)

LINE INPUT# is especially useful if each line of a
data file has been broken into fields, or if a BASIC
program saved in ASCII mode is being read as data
by another program.

Ok
10 OPEN “O”,1,“LIST”
20 LINE INPUT “CUSTOMER INFORMATION? “;C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN “I”,1,“LIST”
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES
234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

LIST [cline number>]

LIST [cline number>[-[<line number>]]]

To list all or part of the program currently in memory
on the screen.

Commands and Statements 75

Remarks BASIC always returns to command level after LIST
is executed.

Syntax format 1
If <line number> is omitted, the program is listed
beginning at the lowest line number. (Listing is
terminated either by the end of the program or by
typing Control-C.) If cline number> is included, only
the specified line is listed. Control-S suspends a
listing. Pressing Control-S again (or Control-Q or any
other key) allows the listing to continue.

Syntax format 2
This format allows the following options:

1. If only the first number is specified, that line
and all subsequent lines are listed.

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed.

Examples Syntax format 1

LIST

LIST 500

Syntax format 2

LIST 150-

LIST-1000

LIST 150-1000

Lists the program currently
in memory.
Lists line 500.

Lists all lines from 150 to
the end.
Lists all lines from the lowest
numberthrough 1000.

Lists lines 150 through
1000, inclusive.

76 Microsoft BASIC Reference Manual

LUST

Syntax

Purpose

Remarks

Examples

LOAD

Syntax

Purpose

Remarks

LLIST [<line number>[-[<line number>]]]

To list all or part of the program currently in memory
to the line printer.

BASIC always returns to command level after an
LLIST is executed. The options for LLIST are the
same as for LIST, Syntax 2.

<1 ine number> is a valid line number in the range 0
to 65529.

LLIST assumes a 132 character wide printer.

LLIST 150-

LLIST-1000

Lists all lines from 150 to
the end.

Lists all lines from the lowest
numberthrough 1000.

LLIST 150-1000 Lists lines 150 through 1000,
inclusive.

LOAD <f ilespec>[, R]

To load a file from disk into memory.

<filespec> includes the name and extension for the
file saved. WithCP/M, the default extension .BAS is
supplied.

Commands and Statements 77

Example

LOAD closes all open files and deletes all variables
and program lines currently residing in memory
before it loads the designated program. However, if
the “R” option is used with LOAD, the program is
RUN after it is loaded, and all open data files are
kept open. Thus, LOAD with the “R” option may be
used to chain several programs (or segments of the
same program). Information may be passed between
the programs using disk data files.

LOAD “STRTRK”,R

LPRINT and LPRINT USING

Syntax LPRINT [<list of expressions>]

Syntax LPRINT USING <string exp>;<list of expressions>

Purpose To print data at the line printer.

Remarks Same as PRINT and PRINT USING, except output
goes to the line printer.

LPRINT assumes a 132 character wide printer.

LSET and RSET

Syntax LSET <string variable> = <string expression>

Syntax RSET <string variable> = <string expression>

Purpose To move data from memory to a random file buffer
(in preparation for a PUT statement).

78 Microsoft BASIC Reference Manual

Remarks

Examples

MERGE

Syntax

Purpose

Remarks

If <string expression> requires fewer bytes than
were fielded to <string variable -, LSET left justifies
the string in the field, and RSET right justifies the
string. (Spaces are used to pad the extra positions.)
If the string is too long for the field, characters are
dropped from the right. Numeric values must be
converted to strings before they are LSET or RSET.
See the MKI$, MKS$, MKD$ functions in Chapter 4.

Note

LSET or RSET may also be used with a
nonfielded string variable to left justify or
right justify a string in a given field. For
example, the program lines

110 A$=SPACE$(20)
120 RSET A$=N$

right justify the string N$ in a 20-character
field. This can be very handy for formatting
printed output.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC$

See also Program 6 in Appendix B, “Microsoft BASIC
Disk I/O.”

MERGE <filespec>

To merge a specified ASCII disk file into the
program currently in memory.

<filespec> is the filename and extension of the file
saved. CP/M will append a default filename
extension of .BAS if one was not supplied in the

Commands and Statements 79

'■■II ■1——1
n
n
n

■
■ — Wl

R
n
Ml
n

■

SAVE command. Refer to “File Naming
Conventions” in Chapter 2 for more information
about possible filename extensions under CP/M.
The file must be saved in ASCII format. (If not, a
“Bad file mode” error occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (Merging may be
thought of as “inserting” the program lines on disk
into the program in memory.)

BASIC always returns to command level after
executing MERGE.

Example MERGE “A:CATPRO”

See also Example 1 for the CHAIN statement in this
chapter.

MIPS

Syntax MlD$(<string exp1>,n[,m])=<string exp2>

Purpose To replace a portion of one string with another
string.

Remarks n and m are integer expressions and <string exp1>
and <string exp2> are string expressions.

The characters in <string exp1>, beginning at
position n, are replaced by the characters in <string
exp2>. The optional m refers to the number of
characters from <string exp2> that will be used in
the replacement. If m is omitted, all of <string
exp2> is used. However, regardless of whether m is
omitted or included, the replacement of characters

80 Microsoft BASIC Reference Manual

never goes beyond the original length of <string
exp1>.

MID$ is also a function that returns a substring of a
given string (see Chapter 4).

Example Ok
10 A$=“KANSAS CITY, MO”
20 MID$(A$,14)=“KS”
30 PRINT A$
Ok
RUN
KANSAS CITY, KS

NAME

Syntax NAME <filespec> AS <new filename>

Purpose To change the name of a disk file.

Remarks <filespec> is a file specification as outlined under
“File Naming Conventions” in Chapter 2. <new
filename> is the new filename. It must be a valid
filename as outlined in the same section.

<filespec> must exist and <new filename> must not
exist; otherwise, an error will result. If the device
name is omitted, the current drive is assumed. After
NAME is executed, the file exists on the same disk,
in the same area of disk space, with the new name.

Example Ok
NAME ‘A:ACCTS” AS “LEDGER”
Ok

In this example, the disk file that was formerly
named ACCTS in drive A will now be named
LEDGER.

Commands and Statements 81

NEW

■

■
■
n
n
n

n
o
n
n
n

n
n

Syntax N EW

Purpose To delete the program currently in memory and
clear all variables.

Remarks NEW is entered at command level to clear memory
before entering a new program. BASIC always
returns to command level after a NEW is executed.

ON ERROR GOTO

Syntax ON ERROR GOTO <line number>

Purpose To enable error trapping and specify the first line of
the error handling subroutine.

Remarks Once error trapping has been enabled, all errors
detected, including direct mode errors (e.g., syntax
errors), will generate a jump to the specified error
handling subroutine. If <line number> does not
exist, an “Undefined line” error results. To disable
error trapping, execute an ON ERROR GOTO 0.
Subsequent errors generate an error message and
halt execution. An ON ERROR GOTO 0 statement
that appears in an error trapping subroutine causes
BASIC to stop and print the error message for the
error that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

Note

If an error occurs during execution of an
error handling subroutine, the BASIC error

82 Microsoft BASIC Reference Manual

message is printed and execution
terminates. Error trapping does not occur
within the error handling subroutine.

Example 10 ON ERROR GOTO 1000

ON... GOSUB and ON... GOTO

Syntax ON <expression> GOTO <l ist of line numbers>

Syntax ON <expression> GOSUB <list of line numbers>

Purpose To branch to one of several specified line numbers,
depending on the value returned when an expression
is evaluated.

Remarks The value of <expression> determines which line
number in the list will be used for branching. For
example, if the value is three, the third line number
in the list will be the destination of the branch. (If
the value is a non-integer, the fractional portion is
rounded.)

In the ON ... GOSUB statement, each line number
in the list must be the first line number of a
subroutine.

If the value of <expression> is zero or greater than
the number of items in the list (but less than or
equal to 255), BASIC continues with the next
executable statement. If the value of <expression>
is negative or greater than 255, an “Illegal function
call” error occurs.

Example 100 ON L-1 GOTO 150,300,320,390

Commands and Statements 83

OPEN

Syntax OPEN <mode>,[#] <file number>,<filespec>,
[<reclen>]

Purpose To allow I/O to a disk file.

Remarks <mode> is a string expression whose first character
is one of the following:

O specifies sequential output mode

I specifies sequential input mode
R specifies random input/output mode

<file number> is an integer expression whose value
is between one and fifteen. The number is then
associated with the file for as long as it is OPEN and
is used to refer other disk I/O statements to the file.

<filespec> is a string expression for file
specification which contains a name that conforms
to CP/M's rules for disk filenames.

<reclen> is an integer expression which, if
included, sets the record length for random files.
<reclen> is not valid for sequential files. The default
record length is 128 bytes. To use OPEN with record
lengths longer than 128 bytes, see “Initialization,” in
Chapter 2.

A disk file must be opened before any disk I/O
operation can be performed on that file. OPEN
allocates a buffer for I/O to the file and determines
the mode of access that will be used with the buffer.

84 Microsoft BASIC Reference Manual

Note

A file can be opened for sequential input or
random access on more than one file
number at a time. A file may be opened for
output, however, on only one file number at
a time.

Example 10 OPEN “I”,2,“INVEN”

See also the example for the FIELD statement in
this chapter.

OPTION BASE

Syntax OPTION BASE n

Purpose To declare the minimum value for array subscripts.

Remarks n is either 1 or 0. The default value is 0. If the
statement

OPTION BASE 1

is executed, the lowest value an array subscript may
have is one.

OPTION BASE must be coded before you define or
use any arrays.

POKE

Syntax POKE I,J

Purpose To write a byte into a memory location.

U

Commands and Statements 85

Remarks

Example

PRINT

Syntax

Purpose

Remarks

I and J are integer expressions. The expression I is
the address of the memory location and J is the data
byte. J must be in the range 0 to 255.1 must be in
the range 0 to 65536.

The complementary function of POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read.

POKE and PEEK are useful for efficiently storing
data, loading assembly language subroutines, and
passing arguments and results to and from assembly
language subroutines.

10 POKE 106,0

PRINT [clist of expressions>]

To display data at the screen.

If <l ist of expressions> is omitted, a blank line is
printed. If <l ist of expressions> is included, the
values of the expressions are displayed on the
screen. The expressions in the list may be numeric
and/or string expressions. (Strings must be
enclosed in quotation marks.)

Print Positions

The position of each printed item is determined by
the punctuation used to separate the items in the
list. BASIC divides the line into print zones of 14
spaces each. In the list of expressions, a comma
causes the next value to be printed at the beginning
of the next zone. A semicolon causes the next value
to be printed immediately after the last value. Typing
one or more spaces between expressions has the
same effect as typing a semicolon.

86 Microsoft BASIC Reference Manua

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly. If the
list of expressions terminates without a comma or a
semicolon, a <RETURN> is printed at the end of
the line. If the printed line is longer than the screen
width, BASIC goes to the next physical line to
continue printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unsealed format no less
accurately than they can be represented in the
scaled format are output using the unsealed format.
For example, 1 CC(-7) is output as .0000001 and
10'(-8) is output as 1E-08. Double precision
numbers that can be represented with 16 or fewer
digits in the unsealed format no less accurately than
they can be represented in the scaled format are
output using the unsealed format. For example,
1D-15 is output as .0000000000000001 and 1D-16
is output as 1 D-16.

A question mark may be used in place of the word
PRINT in a PRINT statement.

Example 1 Ok
10X=5
20 PRINT X+5, X-5, X*(-5), X'5
30 END
RUN
10 0 -25 3125

Ok

In this example, the commas in the PRINT statement
cause each value to be printed at the beginning of
the next print zone.

Commands and Statements 87

Example 2

Example 3

Ok
10 INPUTX
20 PRINT X “SQUARED IS” X~2 “AND”;
30 PRINT X “CUBED IS”X~3
40 PRINT
50 GOTO 10
Ok
RUN
?9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of line 20
causes both PRINT statements to be printed on the
same line, and line 40 causes a blank line to be
printed before the next prompt.

Ok
10 FOR X= 1 TO 5
20J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X
Ok
RUN
5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don’t forget,
a number is always followed by a space and a
positive number is preceded by a space.) In line 40,
a question mark is used instead of the word PRINT.

88 Microsoft BASIC Reference Manual

PRINT USING

Syntax PRINT USING <string exp>;<list of expressions>

Purpose To print strings or numbers using a specified format.

Remarks <string exp> is a string literal (or variable comprised
and of special formatting characters). These formatting
Examples characters (see below) determine the field and the

format of the printed strings or numbers.

<1 ist of expressions> consists of the string
expressions or numeric expressions that are to be
printed, separated by semicolons.

String Fields

When PRINT USING is used to print strings, one of
three formatting characters may be used to format
the string field:

“!” Specifies that only the first character in the
given string is to be printed.

“ \n spaces \”
Specifies that 2+n characters from the
string are to be printed. If the backslashes
are typed with no spaces, two characters
will be printed; with one space, three
characters will be printed, and so on. If
the string is longer than the field, the
extra characters are ignored. If the field
is longer than the string, the string will be
left justified in the field and padded with
spaces on the right.

Commands and Statements 89

Example:

10 A$=“LOOK”:B$=“OUT”
30 PRINT USING “!”;A$;B$
40 PRINT USING “ \ \”;A$;B$
50 PRINT USING “ \ \”;A$;B$;“!!”
RUN
LO
LOOKOUT
LOOKOUT !!

Specifies a variable length string field. When
the field is specified with the string is
output exactly as input.

Example:

10 A$=“LOOK”:B$=“OUT”
20 PRINT USING “!”;A$;
30 PRINT USING “&”;B$
RUN
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to format
the numeric field:

A number sign is used to represent each
digit position. Digit positions are always
filled. If the number to be printed has fewer
digits than positions specified, the number
will be right justified (preceded by spaces) in
the field.

A decimal point may be inserted at any
position in the field. If the format string
specifies that a digit is to precede the
decimal point, the digit will always be printed
(as 0, if necessary). Numbers are rounded as
necessary.

90 Microsoft BASIC Reference Manual

PRINT USING 78
0.78
PRINT USING “###.##”;987.654
987.65
PRINT USING “##.## ”;10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were
inserted at the end of the format string to
separate the printed values on the line.

+ A plus sign at the beginning or end of the
format string causes the sign of the number
(plus or minus) to be printed before or after
the number.

A minus sign at the end of the format field
causes negative numbers to be printed with
a trailing minus sign.

PRINT USING “+##.## ”;-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90
PRINTUSING"##.##— ”;“;-68.95,22.449,
-7.01 68.95- 22.45 7.01-

** A double asterisk at the beginning of the
format string causes leading spaces in the
numeric field to be filled with asterisks.
The ** also specifies positions for two
more digits.

PRINT USING “**#.# ”;12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign
to be printed to the immediate left of the
formatted number. The $$ specifies two
more digit positions, one of which is the
dollar sign. The exponential format cannot
be used with $$. Negative numbers cannot

Commands and Statements 91

be used unless the minus sign trails to
the right.

PRINT USING “$$###.##”;456.78
$456.78

**$ The **$ at the beginning of a format string
combines the effects of the ** and $$
symbols (see above). Leading spaces are
asterisk-filled and a dollar sign is printed
before the number. **$ specifies three more
digit positions, one of which is the dollar sign.

PRINT USING “**$##.##”;2.34
***$2.34

A comma specifies an additional digit
position. A comma to the left of the decimal
point in a formatting string causes a comma
to be printed to the left of every third
digit to the left of the decimal point. A
comma at the end of the format string is
printed as part of the string. The comma has
no effect if used with the exponential (" " ")
format.

PRINT USING “####,.##”;1234.5
1,234.50

PRINT USING “####.##,”;1234.5
1234.50,

Four carets may be placed after the digit
position characters to specify exponential
format. The four carets allow space for E+xx
to be printed. Any decimal point position
may be specified. The significant digits are
left justified, and the exponent is adjusted.
Unless a leading + or trailing + or — sign is
specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

92 Microsoft BASIC Reference Manual

PRINT USING “##.## ”;234.56
2.35E+02

PRINT USING “.#### ""-”;888888
.8889E+06

PRINT USING “ + .##"^”;123
+ .12E+03

 An underscore in the format string causes
the next character to be output as a literal
character.

PRINT USING !”;12.34
112.34!

The literal underscore character itself may
be used by placing two underscore characters
() in the format string.

% If the number to be printed is larger than
the specified numeric field, a percent sign
is printed in front of the number. If rounding
causes the number to exceed the field, a
percent sign is printed in front of the
rounded number.

PRINT USING 11.22
%111.22
PRINT USING 999
%1.00

If the number of digits specified exceeds 24,
an “Illegal function call” error results.

PRINT# and PRINT# USING

Syntax PRINT#<filenumber>,[USING<string exp>;]
<list of exps>

Commands and Statements 93

Purpose

Remarks

Examples

To write data to a sequential disk file.

<filenumber> is the number used when the file was
opened for output.

<string exp> is comprised of formatting characters
as described in the previous section (PRINT
USING).

The expressions in <1 ist of expressions> are the
numeric and/or string expressions that will be
written to the file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk just as it
would be displayed on the screen with a PRINT
statement. For this reason, care should be taken to
delimit the data on the disk so that it will be input
correctly from the file.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example:

PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks
that are inserted between print fields will also be
written to the file.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the file, use explicit
delimiters in the list of expressions.

Let A$=“CAMERA” and B$=“93604-1 ”. The
statement

PRINT#1,A$;B$

would write CAMERA93604-1 to the file. Because
there are no delimiters, this could not be input as

94 Microsoft BASIC Reference Manual

two separate strings. To correct the problem, insert
explicit delimiters into the PRINT# statement as
follows:

PRINT#1 ,A$;“,”;B$

The image written to the file is

CAM ERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, surround them with explicit
quotation marks using CHR$(34) before writing
them to the file.

For example, let A$=“CAMERA, AUTOMATIC” and
B$=“ 93604-1 ”. The statement

PRINT#1,A$;B$

would write the following image to the file:

CAMERA, AUTOMATIC 93604-1

The statement

INPUT#1,A$,B$

inputs “CAMERA” to A$ and “AUTOMATIC 93604-1”
to B$. To separate these strings properly in the file,
write double quotation marks to the file image using
CHR$(34). The statement

PRINT#1 ,CHR$(34);A$;CHR$(34);CHR$(34);B$;
CHR$(34)

writes the following image to the file:

“CAMERA, AUTOMATIC”" 93604-1 ”

Commands and Statements 95

PUT

Syntax

Purpose

Remarks

The statement

INPUT#1,A$,B$

inputs “CAMERA, AUTOMATIC” to A$ and
“ 93604-1 "to B$.

The PRINT# statement may also be used with the
USING option to control the format of the disk file.
For example:

PRINT#1,USING“$$###.##,”;J;K;L

For more examples using PRINT#, see the example
for the KILL statement and Program 1 in Appendix B.

PUT [#]<file number>[,<record number>]

To write a record from a random buffer to a random
disk file.

<file number> is the number under which the file
was opened and <record number> is the record
number for the record to be written.

If the <record number> is omitted, the record will
have the next available record number (after the last
PUT). The largest possible record number is 32767.
The smallest record number is 1.

Note

PRINT#, PRINT# USING, and WRITE# may
be used to put characters in the random file
buffer before a PUT statement.

96 Microsoft BASIC Reference Manual

In the case of WRITE#, BASIC pads the
buffer with spaces up to the carriage return.
Any attempt to read or write past the end of
the buffer causes a “Field overflow” error.

Example See the examples in Appendix B.

RANDOMIZE

Syntax RANDOMIZE [<expression>]

Purpose To reseed the random number generator.

Remarks <expression> is a numeric expression. If
<expression> is omitted, BASIC suspends program
execution and asks for a value by printing

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every
time the program is RUN, place a RANDOMIZE
statement at the beginning of the program and
change the argument with each RUN.

Example Ok
10 RANDOMIZE
20 FOR 1=1 TO 5
30 PRINT RND;
40 NEXT I
Ok
RUN
RANDOM NUMBER SEED (-32768 to 32767)? 3

Commands and Statements 97

READ

Syntax

Purpose

Remarks

user types 3

.88598 .484668 .586328 .119426 .709225
Ok

RUN
RANDOM NUMBER SEED (-32768 to 32767)? 4

user types 4 for new sequence

.803506 .162462 .929364 .292443 .322921
Ok

RUN
RANDOM NUMBER SEED (-32768 to 32767)? 3

same sequence as first RUN

.88598 .484668 .586328 .119426 .709225
Ok

READ <variable list>

To read values from a DATA statement and assign
them to variables.

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the values
read must agree with the variable types specified. If
they do not agree, a “Syntax error” will result.

A single READ statement may access one or more
DATA statements (they will be accessed in order), or,
several READ statements may access the same
DATA statement. If the number of variables in

98 Microsoft BASIC Reference Manual

Example 1

<variable Iist> exceeds the number of elements in
the DATA statement(s), an “OUT OF DATA” message
is printed. If the number of variables specified is
fewer than the number of elements in the DATA
statement(s), subsequent READ statements will
begin reading data at the first unread element. If
there are no subsequent READ statements, the
extra data is ignored.

To reread DATA statements from the start, use the
RESTORE statement.

80 FOR 1=1 TO 10
90 READ A(l)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the
DATA statements into the array A. After execution,
the value of A(1) will be 3.08, and so on.

Example 2 Ok
10 PRINT “CITY”, “STATE”, “ ZIP”
20 READ C$,S$,Z
30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY
DENVER,
Ok

STATE
COLORADO

ZIP
80211

This program reads string and numeric data from the
DATA statement in line 30.

Commands and Statements 99

REM___________________________________

Syntax REM <remark>

Purpose To allow explanatory remarks to be inserted in a
program.

Remarks REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into or from a
GOTO or GOSUB statement; execution continues
with the first executable statement after the REM
statement.

Remarks may be added to the end of a line by
preceding the <remark> with a single quotation
mark instead of :REM. <remark> may consist of any
sequence of characters.

Warning

Do not use REM in a data statement, as it is
considered legal data.

Examples

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1-1 TO 20
140 SUM-SUM + V(l)

or

100 Microsoft BASIC Reference Manual

RENUM

Format

Purpose

Remarks

120 FOR 1=1 TO 20 ’CALCULATE AVERAGE
VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

RENUM [[<new number>][,[<old number>]
[,<increment>]]]

To renumber program lines.

<new number> is the first line number to be used in
the new sequence. The default new number is 10.

<old number> is the line in the current program
where renumbering is to begin. The default old
number is the first line of the program.

<increment> is the increment to be used in the new
sequence. The default value is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON...GOTO,
ON...GOSUB, and ERL statements to reflect the new
line numbers. If a nonexistent line number appears
after one of these statements, the error message
“Undefined line xxxxx in yyyyy” is printed. The
incorrect line number reference xxxxx is not
changed by RENUM, but line number yyyyy may be
changed.

Commands and Statements 101

■

Note

RENUM cannot be used to change the order
of program lines (for example, RENUM
15,30 when the program has three lines
numbered 10, 20, and 30) or to create line
numbers greater than 65529. In such cases,
an “Illegal function call” error occurs.

Examples RENUM Renumbers the entire
program. The first new
line number will be 10.
Lines will be numbered in
increments of 10.

RENUM 300,,50 Renumbers the entire
program. The first new
line number will be 300.
Lines will be numbered
in increments of 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
continue in increments
of 20.

RESET

Syntax RESET

Purpose To perform a “warm boot” (clears a BDOS R/O
error).

Remarks Always execute a RESET command after changing
diskettes. Otherwise, you will not be able to write to
the new diskette.

RESET also closes all open files. Therefore, when
changing diskettes, a CLOSE statement should be
executed before removing the old diskette.

102 Microsoft BASIC Reference Manual

RESTORE

Syntax RESTORE [cline number>]

Purpose To allow DATA statements to be reread beginning at
a specified line.

Remarks After RESTORE is executed, the next READ
statement accesses the first item in the first DATA
statement in the program. If cline number> is
specified, the next READ statement accesses the
first item in the specified DATA statement.

Example Ok
10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

RESUME

Syntax
(<0>)

RESUME [< NEXT >]
(cline number>)

Purpose To continue program execution after an error
recovery procedure has been performed.

Remarks Any one of the four formats shown above may be
used, depending upon where execution is to
resume:

Commands and Statements 103

Example

RUN

Syntax 1

Purpose

Remarks

Example

RESUME
or

RESUME 0
RESUME NEXT

Execution resumes at
the statement that
caused the error.
Execution resumes at
the statement immedi­
ately following the one
that caused the error.

RESUME cline number> Execution resumes at
cline number>.

A RESUME statement that is not in an error trap
routine causes a “RESUME without error” message
to be printed.

Ok
10ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT
“TRY AGAIN”:RESUME 80

RUN [cline number>]

To execute the program currently in memory.

If cline number> is specified, execution begins on
that line. Otherwise, execution begins at the lowest
line number. BASIC always returns to command
level after a RUN is executed.

RUN

104 Microsoft BASIC Reference Manual

Syntax 2

Purpose

Remarks

Example

SAVE

Syntax

Purpose

Remarks

RUN <filespec>[,R]

To load a file from disk into memory and run it.

<filespec> is a string expression that includes the
name used when the file was saved. With CP/M, if
no filename extension is given, the default extension
.BAS is supplied.

RUN closes all open files and deletes the current
contents of memory before loading the designated
program. However, with the “R” option, all data files
remain OPEN.

RUN “NEWFIL”,R

See also the programs listed in Appendix B,
“Microsoft BASIC Disk I/O.”

SAVE <filespec>[,

To save a program file on disk.

<filespec> is a string expression that includes the
name used when the file was saved. With CP/M. if
no filename extension is given, the default extension
.BAS is supplied. If the <filespec> already exists,
the file will be overwritten.

Use the A option to save the file in ASCII format.
Otherwise, BASIC saves the file in a compressed
binary format. ASCII format takes more space on
the disk, but some disk access requires that files be

Commands and Statements 105

Examples

STOP

Syntax

Purpose

Remarks

in ASCII format. For example, the MERGE command
requires an ASCII format file.

Use the P option to protect the file by saving it in an
encoded binary format. When a protected file is
later RUN (or loaded), any attempt to list or edit it
will fail.

Warning

Once the P option is used, a file cannot be
“unprotected.”

SAVE“COM2”,A
SAVE“PROG”,P

See also the programs listed in Appendix B,
“Microsoft BASIC Disk I/O.”

STOP

To terminate program execution and return to
command level.

STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

BASIC always returns to command level after a
STOP is executed. Execution is resumed by issuing
a CONT command.

106 Microsoft BASIC Reference Manua

Example

SWAP

Ok
10 INPUT A,B,C
20 K=A~2*5.3:L=B"3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L
30.7692
Ok
CONT
115.9

Ok

Syntax

Purpose

Remarks

Example

SWAP <variable>,<variable>

To exchange the values of two variables.

Any type variable may be swapped (integer, single
precision, double precision, string), but the two
variables must be of the same type or a “Type
mismatch” error results.

Ok
10 A$=“ONE”: B$-ALL”: C$=“FOR”
20 PRINT A$ C$ B$
30 SWAP AS, B$
40 PRINT AS C$ B$
RUN
Ok
ONE FOR ALL
ALL FOR ONE
Ok

Commands and Statements 107

SYSTEM

Syntax SYSTEM

Purpose To close all files and return to CP/M command level.

Remarks You cannot use Control-C to return to CP/M, as it
always returns you to BASIC.

Example Ok
SYSTEM
A>

TRON/TROFF

Syntax TRON

Syntax TROFF

Purpose To trace the execution of program statements.

Remarks As an aid in debugging, the TRON statement
(executed in either the direct or indirect mode)
enables a trace flag that prints each line number of
the program as it is executed. The numbers appear
enclosed in square brackets. The trace flag is
disabled with the TROFF statement (or when a NEW
command is executed).

Example Ok
10 K=10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10

108 Microsoft BASIC Reference Manua

60 NEXT
70 END
TRON
Ok
RUN
[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]
Ok
TROFF
Ok

WHILE... WEND

Syntax WHILE <expression>

[<loop statements>]

WEND

Purpose To execute a series of statements in a loop as long
as a given condition is true.

Remarks If <expression> is not zero (i.e., true),
<loop statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If it
is still true, the process is repeated. If it is not true,
execution resumes with the statement following the
WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a “WHILE
without WEND” error, and an unmatched WEND
statement causes a “WEND without WHILE” error.

Commands and Statements 109

Example 90 BUBBLE SORT ARRAY A$
100 FLIPS=1 ‘FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=O
120 F0RI=1T0J-1
130 IF A$(I)>A$(I + 1) THEN

SWAPA$(I),A$(I + 1):
FLIPS=1

140 NEXT I
150 WEND

WIDTH

Syntax WIDTH [LPRINT] <integer expression>

Purpose To set the printed line width for the screen or line
printer to a specified number of characters.

Remarks

Example

The <integer expression> must have a value in the
range 15 to 255. The default width is 80 characters.

If the LPRINT option is omitted, the line width is set
at the screen. If LPRINT is included, the line width
is set at the line printer.

If <integer expression> is 255, the line width is
“infinite,” that is, BASIC never inserts a carriage
return. However, the position of the cursor or the
print head, as given by the POS or LPOS function,
returns to zero after position 255.

Ok
10 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok

110 Microsoft BASIC Reference Manua

WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

WRITE

Syntax WRITE [<expression>,<expression>,...]

Purpose

Remarks

To output data on the screen.

If <expression> is omitted, a blank line is output. If
<expression> is included, the values of the
expression(s) are output on the screen. The
expressions may be numeric and/or string
expressions, and they must be separated by
commas.

In printed output, each item is separated from the
last by a comma. Printed strings are delimited by
quotation marks. After the last item in the list is
printed, BASIC inserts a carriage return/line feed
sequence.

WRITE outputs numeric values using the same
format as the PRINT statement.

Example Ok
10 A=80:B=90:C$=“THAT’S ALL”
20 WRITE A,B,C$
RUN
80, 90,“THAT’S ALL”
Ok

Commands and Statements 111

WRITE #

Syntax WRITE#<file number>,<expression>,
[<expression>,...]

Purpose To write data to a sequential file.

Remarks <file number> is the number under which the file
was opened in “O” mode. The <expressions> may
be either string or numeric. They must be separated
by commas.

WRITE#, unlike PRINT#, inserts commas between
the items as they are written to disk and delimits
strings with quotation marks. Therefore, it is not
necessary for the user to put explicit delimiters in
the list. A carriage return/line feed sequence is
inserted after the last item in the list is written to
disk.

Example Let A$=“CAMERA” and B$=“93604-1”. The
statement:

WRITE#1,A$,B$

writes the following image to disk:

“CAM ERA”,“93604-1”

A subsequent INPUT# statement, such as:

INPUT#1,A$,B$

would input “CAMERA” to A$ and “93604-1 ” to B$.

12 Microsoft BASIC Reference Manual

Microsoft BASIC Functions

■--- -

Functions 113I f

115 ABS 128 LOG
115 ASC 129 LPOS
116 ATN 129 MIDS
116 CDBL 130 MKDS
117 CHRS 130 MKIS
117 CINT 130 MKSS
118 COS 131 OCTS
119 CSNG 131 PEEK
119 CVD 132 POS
119 CVI 132 RIGHTS
119 CVS 133 RND
120 EOF 133 SGN
121 EXP 134 SIN
121 FIX 134 SPACES
122 FRE 135 SPC
123 HEXS 135 SQR
123 INKEYS 136 STRS
124 INPUTS 136 STRINGS
125 INSTR 137 TAB
126 INT 138 TAN
126 LEFTS 138 USR
127 LEN 139 VAL
127 LOC 140 VARPTR
128 LOF

114 Microsoft BASIC Reference Manual

4
Microsoft BASIC Functions

The intrinsic functions provided by Microsoft BASIC are presented
in this chapter. The functions may be called from any program
without further definition.

Functions differ from commands and statements in that they
cannot be performed by themselves. They must be used in
conjunction with either a statement or command. If used with an
assignment statement (=), functions must appear on the right side
of the = sign. Commands and statements, on the other hand, may
be used by themselves (without arguments).

Each function description consists of the following components:

Syntax Shows the correct format for the function.
Action Describes the action the function takes.
Remarks Describes in detail how the function is used;

also discusses special conditions when using
the function.

Example Shows sample programs or program
segments that demonstrate the use of the
function.

Syntax notation for all functions is given in Chapter 1. Numeric and
string arguments (where applicable) have been abbreviated as
follows:

X and Y Represent any numeric expressions.

I and J Represent integer expressions.

X$ and Y$ Represent string expressions.

If a floating-point value is supplied where an integer is required,
BASIC rounds the fractional portion and uses the resulting integer.

ABS

Syntax ABS(X)

Action Returns the absolute value of the expression X.

Example Ok
PRINT ABS(7*(-5))
35
Ok

ASC

Syntax ASC(X$)

Action Returns a numeric value that is the ASCII code of
the first character of the string X$. (See Appendix F
for ASCII codes.)

Remarks If X$ is null, an “Illegal function call” error is
returned.

See the CHR$ function for ASCII-to-string
conversion.

116 Microsoft BASIC Reference Manual

Example Ok
10X$ = “TEST”
20 PRINT ASC(X$)
RUN
84
Ok

ATN

Syntax ATN(X)

Action Returns the arctangent of X in radians.

Remarks

Example

The result is in the range -pi/2 to pi/2.

The calculation of ATN(X) is performed in single
precision, regardless of the declared variable type
(integer, single precision, or double precision) of X.

Ok
10 INPUT X
20 PRINT ATN(X)
RUN
?3
1.24905

Ok

CDBL

Syntax CDBL(X)

Action Converts X to a double precision number.

Example Ok
10 A = 454.67
20 PRINT A;CDBL(A)
RUN
454.67 454.6700134277344
Ok

CHRS

Syntax CHR$(I)

Action Returns a string whose one element has ASCII code
I. (ASCII codes are listed in Appendix F.)

Remarks CHR$ is commonly used to send a special character
to the terminal. For instance, the BEL character
could be sent (CHR$(7)) as a preface to an error
message.

Note

The Apple III .CONSOLE driver uses specific
ASCII codes for special screen functions.
Consult your Apple III Standard Device
Drivers Manual for more information.

See the ASC function for ASCII-to-numeric
conversion.

Example Ok
PRINT CHR$(66)
B
Ok

CINT

Syntax CINT(X)

118 Microsoft BASIC Reference Manual

Action Converts X to an integer.

Remarks Converts X to an integer by rounding the fractional
portion. If X is not in the range -32768 to 32767, an
“Overflow” error occurs.

See the CDBL and CSNG functions for converting
numbers to double precision and single precision
data types. See also the FIX and INT functions, both
of which return integers.

Example Ok
PRINT CINT(45.67)
46
Ok

COS___________________________________

Syntax COS(X)

Action Returns the cosine of X.

Remarks COS is the trigonometric cosine function. X must be
in radians. To convert from degrees to radians,
multiply by pi/180 (pi = 3.141593).

The calculation of COS(X) is performedin single
precision regardless of the declared variable type
(integer, single precision, or double precision) of X.

Example Ok
10 X = 2*COS(.4)
20 PRINT X
RUN
1.84212

Ok

Functions 119

CSNG

Syntax CSNG(X)

Action Converts X to a single precision number.

Remarks See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types.

Example Ok
10 A# = 975.3421#
20 PRINT A#; CSNG(A#)
RUN
975.3421 975.342
Ok

CVI, CVS, CVD

Syntax CVI(<2-byte string>)
CVS(<4-byte string>)
CVD(<8-byte string>)

Action Convert string variable values to numeric variable
values.

Remarks Numeric values that are read in from a random disk
file must be converted from strings back into
numbers. CVI converts a 2-byte string to an integer.
CVS converts a 4-byte string to a single precision
number. CVD converts an 8-byte string to a double
precision number.

See also “MKI$, MKS$, MKD$” in this chapter and
“Random Files” in Appendix B.

20 Microsoft BASIC Reference Manual

Example

EOF

70 FIELD #1,4 AS N$, 12 AS B$,...
80 GET #1
90 Y=CVS(N$)

Syntax EOF(<file number>)

Action Tests for an end-of-file condition.

Remarks <file number> is the number specified in the OPEN
statement.

The EOF function returns -1 (true) if the end of a
sequential file has been reached. Use EOF to test
for an end-of-file condition while inputting, to avoid
“Input past end” errors.

With CP/M, the EOF function may be used with
random files. If a GET is executed past the end of
file, EOF will return a -1. This may be used to find
the size of a file using a binary search or other
algorithm.

Example Ok
10 OPEN “I”,1,“DATA”
20 C=0
30 IF EOF(1)THEN 100
40 INPUT #1,M(C)
50 C=C+1:GOTO 30

Functions 121

EXP

Syntax EXP(X)

Action Calculates the exponential function e.

Remarks EXP returns the mathematical number e raised to
the X power. X must be <=87.3365. If EXP
overflows, the “Overflow” error message is
displayed, machine infinity with the appropriate sign
is supplied as the result, and execution continues.

The calculation of EXP(X) is performed in single
precision, regardless of the declared variable type
(integer, single precision, or double precision) of X.

Example Ok
10X = 5
20 PRINT EXP(X-1)
RUN
54.5982

Ok

FIX

Syntax FIX(X)

Action Truncates X to an integer.

Remarks FIX(X) is equivalent to the expression
SGN(X)*INT(ABS(X)). The difference between FIX
and I NT is that FIX does not return the next lower
number when X is negative, as INT does.

See the INT and CINT functions which also return
an integer.

122 Microsoft BASIC Reference Manual

Examples: Ok
PRINT FIX(58.75)
58

Ok

PRINT FIX(-58.75)
-58
Ok

FRE

Arguments to FRE are dummy arguments.

Syntax FRE(O)
FRE(X$)

Action Returns the number of bytes in memory not being
used by BASIC.

Remarks Strings in BASIC often have variable lengths. That
is, each time you assign a value to a string, its length
may change. Strings are also manipulated
dynamically. For this reason string space can be
scattered or fragmented.

FRE(“ ”) forces a reallocation of memory space
(otherwise known as “housecleaning,” “garbage
collection,” etc.) before returning the number of
free bytes. Housecleaning collects useful data and
frees up unused areas of memory once used for
strings. The data is compressed so you can use
memory space more efficiently.

BASIC initiates housecleaning when all free
memory is used up. The process may take 1 to 1 1/2
minutes. Therefore, using FRE(“ ”) periodically will
result in shorter delays for each housecleaning.

Functions 123

Example

Note

HEXS

Syntax HEX$(X)

Action

Remarks

n
See the OCT$ function for octal conversion.

Examplen

INKEY$

Syntax INKEYS

Returns a string that represents the hexadecimal
value of the decimal argument.

32 DECIMAL IS 20 HEXADECIMAL
Ok

X is rounded to an integer before HEX$(X) is
evaluated.

Ok
PRINT FRE(O)
14542

Ok

The actual value returned by the FRE
function may be different from the value
returned in this example.

Ok
10 INPUTX
20 A$ = HEX$(X)
30 PRINT X “DECIMAL IS “ AS
HEXADECIMAL”
RUN

124 Microsoft BASIC Reference Manua

Action Reads a character from the keyboard.

Remarks INKEY$ returns either a one-character string
containing a character read from the keyboard or a
null string if no character is pending at the
keyboard. No characters are echoed and all
characters are passed through to the program
except for Control-C, which terminates the program.

Example Ok
1000 ‘TIMED INPUT SUBROUTINE
1010 RESPONSES-'”
1020 FOR l%=1 TO TIMELIMIT%
1030 A$=INKEY$: IF LEN(A$)=0
THEN 1060
1040 IF ASC(A$)=13 THEN
TIMEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT l%
1070 TIMEOUT%=1 : RETURN

INPUTS

Syntax INPUT$(X[,[#]Y])

Action Returns a string of X characters, read from the
keyboard or from file number Y.

Remarks X is a string of characters and Y is the file number
used in the OPEN statement. File number 0 is used
to denote the keyboard.

If the keyboard is used for input, no characters are
echoed and all control characters are passed
through except Control-C, which is used to interrupt
the execution of the INPUTS function.

Functions 125

Example 1

Example 2

Ok
5 ‘LIST THE CONTENTS OF A
SEQUENTIAL FILE IN HEXADECIMAL
10 OPEN‘T’,1/‘DATA”
20 IF EOF(1)THEN 50
30 PRINT
HEX$(ASC(INPUT$(1 ,#1)));
40 GOTO 20
50 PRINT
60 END

100 PRINT “TYPE P TO PROCEED OR
S TO STOP”
110 X$=INPUT$(1)
120 IF X$=“P”THEN 500
130 IF X$=“S”THEN 700 ELSE 100

INSTR

Remarks

Syntax INSTR([I,]X$,Y$)

Action Searches for the first occurrence of string Y$ in X$
and returns the position at which the match is found.
Optional offset I sets the position for starting the
search.

I is a numeric expression in the range 1 to 255.
If I>LEN(X$), or if X$ is null, or if Y$ cannot be found,
INSTR returns 0. If Y$ is null, INSTR returns I or 1.
X$ and Y$ may be string variables, string
expressions or string literals.

If l=0 is specified, the error message “Illegal
argument in <line number>” is returned.

126 Microsoft BASIC Reference Manual

Example Ok
10 X$ = “ABCDEB”
20 Y$ = “B”
30 PRINT
INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN
2 6
Ok

INT

Syntax INT(X)

Action Returns the largest integer <=X.

Remarks See the Cl NT and FIX functions, which also return
integer values.

Examples PRINT INT(99.89)
99
Ok

PRINT INT(-12.11)
-13
Ok

LEFTS

Syntax LEFT$(X$,I)

Action Returns a string comprised of the leftmost I
characters of X$.

Remarks I must be in the range 0 to 255. If I is greater than
LEN(X$), the entire string (X$) will be returned. If
l=0, the null string (length zero) is returned.

Functions 127

Also see the MID$ and RIGHT$ functions.

Example Ok
10 A$ = “BASIC”
20 B$ = LEFT$(A$,5)
30 PRINT B$
RUN
BASIC
Ok

LEN

Syntax LEN(X$)

Action Returns the number of characters in X$.

Remarks Nonprinting characters and blanks are counted.

Example Ok
10 X$ = “PORTLAND, OREGON”
20 PRINT LEN(X$)
RUN
16

Ok

LOC

Syntax LOC(<file number>)

Action Returns the current position in the file.

Remarks With random disk files, LOC returns the record
number just read or written from a GET or PUT
statement. If the file was opened but no disk I/O has
been performed yet, LOC returns a 0.

128 Microsoft BASIC Reference Manua

With sequential files, LOC returns the number of
sectors (128 byte blocks) read from or written to the
file since it was opened.

Example Ok
200 IF LOC(1)>50 THEN STOP

LOF

Syntax LOF(<file number>)

Action Returns the number of records present in the last
extent (128 records) read or written. If the file does
not exceed one extent, then LOF returns the true
length of the file.

Example Ok
110 IF NUM%>LOF(1) THEN PRINT
“INVALID ENTRY”

LOG

Syntax LOG(X)

Action Returns the natural logarithm of X.

Remarks X must be greater than zero.

The calculation LOG(X) is performed in single
precision, regardless of the declared variable type
(integer, single precision, or double precision) of X.

Example Ok
PRINT LOG(45/7)
1.86075

Ok

Functions 129

LPOS

Syntax

Action

Remarks

Example

MIDS

Syntax

Action

Remarks

LPOS(X)

Returns the current position of the line printer print
head within the line printer buffer.

LPOS does not necessarily give the physical
position of the print head. X is a dummy argument.

Ok
100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

MID$(X$,I[,J])

Returns a string of length J characters from X$
beginning with the Ith character.

I and J must be in the range 1 to 255. If J is omitted,
or if there are fewer than J characters to the right of
the Ith character, all rightmost characters beginning
with the Ith character are returned. If l>LEN(X$),
MID$ returns a null string.

If l=0 is specified, the error message “ILLEGAL
ARGUMENT IN <line number>” is returned.

Also see the LEFT$ and RIGHTS functions.

130 Microsoft BASIC Reference Manual

Example Ok
10 A$=“GOOD”
20 B$=“MORNING EVENING AFTERNOON”
30 PRINT A$;MID$(B$,9,7)
Ok
RUN
GOOD EVENING
Ok

MKIS, MKSS, MKDS

Syntax MKI$(<integer expression:^
MKS$(<single precision expression^
MKD$(<double precision expression:^

Action Converts numeric values to string values.

Remarks Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer to a
2-byte string. MKS$ converts a single precision
number to a 4-byte string. MKD$ converts a double
precision number to an 8-byte string.

See also “CVI, CVS, CVD” in this chapter and
“Random Files” in Appendix B.

Example Ok
90 AMT=(K+T)
100 FIELD #1,8 AS D$, 20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

Functions 131

OCT$

Syntax OCT$(X)

Action Returns a string which represents the octal value of
the decimal argument.

Remarks X is rounded to an integer before OCT$(X) is
evaluated.

See the HEX$ function for hexadecimal conversion.

Example Ok
PRINT OCT$(24)
30

Ok

PEEK

Syntax PEEK(I)

Action Returns the byte read from the indicated memory
location (I).

Remarks The returned value is an integer in the range 0 to
255. I must be in the range 0 to 65536.

PEEK is the complementary function of the POKE
statement.

Example Ok
A=PEEK(&H5A00)

132 Microsoft BASIC Reference Manual

POS

Syntax POS(I)

Action Returns the current cursor position.

Remarks The current horizontal (column) position of the
cursor is returned. The returned value is in the
range of 1 (the leftmost position) to 80. X is a
dummy argument.

Also see the LPOS function.

Example IF POS(X)>60 THEN PRINT CHR$(13)

RIGHT$

Syntax RIGHT$(X$,I)

Action Returns the rightmost I characters of string X$.

Remarks If l=LEN(X$), returns X$. If l=0, the null string
(length zero) is returned.

Also see the MID$ and LEFTS functions.

Example Ok
10 A$=“DISK BASIC”
20 PRINT RIGHT$(A$,8)
RUN
BASIC
Ok

Functions 133

RND

Syntax RND[(X)]

Action Returns a random number between 0 and 1.

Remarks The same sequence of random numbers is
generated each time the program is RUN unless the
random number generator is reseeded (see
RANDOMIZE). However, X<0 always restarts the
same sequence for any given X.

X>0 or X omitted generates the next random
number in the sequence. X=0 repeats the last
number generated.

Example Ok
10 FOR 1=1 TO 5
20 PRINT INT(RND* 100);
30 NEXT
RUN
24 30 31 51 5

Ok

SGN

Syntax SGN(X)

Action Returns the mathematical sign (signum) function.

Remarks If X>0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
If X<0, SGN(X) returns -1.

Example ON SGN(X)+2 GOTO 100,200,300

branches to 100 if X is negative, 200 if X is 0 and
300 if X is positive.

34 Microsoft BASIC Reference Manual

SIN

Syntax

Action

Remarks

Example

SPACES

Syntax

Action

Remarks

SIN(X)

Calculates the trigonometric sine function of the
angle X.

Returns the sine of X in radians.

The calculation of SIN(X) is performed in single
precision regardless of the declared variable type
(integer, single precision, or double precision) of X.

If you want to convert degrees to radians, multiply
by pi/180 (pi = 3.141593).

Ok
PRINT SIN(1.5)
.997495

Ok

SPACE$(X)

Returns a string of spaces of length X.

The expression X is rounded to an integer and must
be in the range 0 to 255.

Also see the SPC function.

Functions 135

Example Ok
10 FOR I = 1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$;l
40 NEXT I
RUN

1
2

3
4

5
Ok

SPC

Syntax

Action

Remarks

SPC(I)

Prints I spaces on the screen.

SPC may only be used with PRINT and LPRINT
statements. I must be in the range 0 to 255. A';’ is
assumed to follow the SPC(I) command.

Also see the SPACE$ function.

Example

SQR

Ok
PRINT “OVER” SPC(15) “THERE”
OVER THERE
Ok

Syntax SQR(X)

Action Returns the square root of X.

136 Microsoft BASIC Reference Manual

Remarks X must be >=0.

Example Ok
10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN
10 3.16228
15 3.87298
20 4.47214
25 5

Ok

STRS

Syntax STR$(X)

Action Returns a string representation of the value of X.

Remarks The VAL function is the inverse of the value of X.

Example Ok
5 REM ARITHMETIC FOR KIDS
10 INPUT “TYPE A NUMBER”;N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,
400,500

STRINGS

Syntax STRING$(I,J)
STRING$(I,X$)

Action Returns a string of length I whose characters all
have ASCII code J or the first character of X$.

Functions 137

Remarks I and J are in the range of 0 to 255.

Example Ok
10 X$ = STRING$(10,45)
20 PRINT X$ “MONTHLY REPORT” X$
RUN
------------- MONTHLY REPORT--------------
Ok

TAB

Syntax TAB(I)

Action Tabs to position I on the screen.

Remarks I must be in the range 1 to 255. If the current print
position is already beyond space I, TAB goes to that
position on the next line. Space 1 is the leftmost
position, and the rightmost position is the width
minus one.

TAB may only be used in PRINT and LPRINT
statements.

Example Ok
10 PRINT “NAME” TAB(25) “AMOUNT”: PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA “G. T. JONES”,“$25.00”
RUN
NAME AMOUNT

G.T. JONES $25.00
Ok

138 Microsoft BASIC Reference Manua

TAN

Syntax

Action

Remarks

Example

USR

Syntax

Action

Remarks

TAN(X)

Calculates the trigonometric tangent of the angle X.

Returns the tangent of X in radians.

The calculation of TAN(X) is performed in single
precision, regardless of the declared variable type
(integer, single precision, or double precision) of X.

If the result of a TAN operation overflows, the
“Overflow” error message is displayed, machine
infinity with the appropriate sign is supplied as the
result, and execution continues.

10 Y = Q*TAN(X)/2

USR[<digit>](X)

Calls the indicated assembly language subroutine
with the argument X.

<digit> is in the range 0 to 9 and corresponds to the
digit supplied with the DEF USR statement for that
routine. If <digit> is omitted, USRO is assumed.

The CALL statement is another way to call an
assembly language routine. See Appendix C for
more information on using assembly language
subroutines.

Functions 139

Example 40B = T*SIN(Y)
50 C = USR(B/2)
60D = USR(B/3)

VAL

Syntax VAL(XS)

Action Returns the numerical value of string X$.

Remarks The VAL function also strips leading blanks, tabs,
and linefeeds from the argument string. For
example,

VAL(“ -3”)

returns -3.

See also the STR$ function for numeric-to-string
conversion.

Example Ok
10 READ NAMES,CITYS,STATES,ZIPS
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699 THEN
PRINT NAMES
TAB(25) “OUT OF STATE”
30 IF VAL(ZIP$)>=90801 AND VAL(ZIPS)<=90815
THEN
PRINT
NAMES TAB(25) “LONG BEACH”

140 Microsoft BASIC Reference Manual

VARPTR

Format

Action

Remarks

!
(<variable name>)

(#<file number>)

Returns the memory address of a variable or file
control block.

For either argument, the returned address is an
integer in the range 0 to 65535.

VARPTR(<variable name>) returns the address of
the first byte of data identified with a variable. A
value must be assigned to <variable name> prior to
execution of VARPTR. Otherwise, an “Illegal
function call” error results. Any type variable name
may be used (numeric, string, array). The address
returned is an integer in the range 32767 to -32768.
If a negative address is returned, add it to 65536 to
obtain the actual address.

VARPTR is usually used to obtain the address of a
variable or array so the address may be passed to an
assembly language subroutine. A function call of the
form VARPTR(A(0)) is usually specified when
passing an array, so that the lowest-addressed
element of the array is returned.

Note

All simple variables should be assigned
before calling VARPTR for an array, since
the addresses of the arrays change
whenever a new simple variable is assigned.

VARPTR(#<file number>) is used for sequential
files. It returns the starting address of the disk I/O

Functions 141

buffer assigned to <file number>. For random files,
it returns the address of the FIELD buffer assigned
to <file number>.

Example 100 X=USR(VARPTR(Y))

142 Microsoft BASIC Reference Manua

I

144 Microsoft BASIC Reference Manual

Appendix A

Converting Programs
to Microsoft BASIC

If you have programs written in a BASIC other than Microsoft
BASIC, some minor adjustments may be necessary before they
can be run with Microsoft BASIC. Here are some specific things to
look for when converting BASIC programs.

String Dimensions

Delete all statements that are used to declare the length of
strings. A statement such as DIM A$(I,J), which dimensions a string
array for J elements of length I, should be converted to the
Microsoft BASIC statement DIM A$(J).

Some BASICs require use of a comma or ampersand for string
concatenation. Each of these must be changed to a plus sign,
which is the operator for Microsoft BASIC string concatenation.
In Microsoft BASIC, the MID$, RIGHTS, and LEFTS functions are
used to form substrings out of strings. Forms such as A$(I) to
access the Ith character in AS, or A$(I,J) to take a substring of AS
from position I to position J, must be changed as follows:

Other BASIC
X$=A$(I)
X$=A$(I,J)

Microsoft BASIC
X$=MID$(A$,I,1)
X$=MID$(A$,I,J-I + 1)

If the substring reference occurs on the left side of an

Converting Programs to Microsoft BASIC 145

n
IN
IN
““
IN
n
n
IN

n
n
n
H
■
F|

assignment and X$ is used to replace characters in A$, convert as
follows:

Other BASIC
A$(I)=X$
A$(I,J9)=X$

Microsoft BASIC
MID$(A$,1,1)=X$
MID$(A$,I,J-I + 1)=X$

Multiple Assignments

Some BASICs allow statements of the form

10 LET B=C=0

to set B and C equal to zero. Microsoft BASIC would interpret the
second equal sign as a logical operator and set B equal to -1 if
C equaled 0. Instead, convert this statement to two assignment
statements:

10C=0:B=0

Multiple Statements

Some BASICs use a backslash (\) to separate multiple statements
on a line. With Microsoft BASIC, be sure all statements on a line
are separated by a colon (:).

MAT Functions

Programs using the MAT functions available in some BASICs
must be rewritten using FOR...NEXT loops to execute properly.

146 Microsoft BASIC Reference Manual

Appendix B

Microsoft BASIC Disk I/O

Disk I/O procedures for the beginning BASIC user are examined in
this appendix. If you are new to BASIC or if you are encounter­
ing disk related errors, read through these procedures and program
examples to make sure you are using all the disk statements
correctly.

Whenever a <filespec> is required in a disk command or
statement, refer to “File Naming Conventions” in Chapter 2 to
determine how to specify disk files correctly. The CP/M
operating system appends a default extension of .BAS to the
filename given in a SAVE, RUN, MERGE, or LOAD command.

Program File Commands

The following is a review of the commands and statements used in
program file manipulation.

SAVE <filespec>[,A] Writes to disk the program that
currently resides in memory.
Optional A writes the program as
a series of ASCII characters.
(Otherwise, BASIC uses a
compressed binary format.)

Microsoft BASIC Disk I/O 147

LOAD <f i lespeO [, R]

RUN <filespec>[,R]

MERGE <filespec>

Loads the program from disk into
memory. Optional R runs the
program immediately. LOAD always
deletes the current contents of
memory and closes all files before
loading. If R is included, however,
open data files are kept open.
Thus, programs can be chained or
loaded in sections and access the
same data files. (LOAD <filespec>,
R and RUN <filespec>,R are
equivalent.)

RUN <filespec> loads the program
from disk into memory and runs it.
RUN deletes the current contents
of memory and closes all files
before loading the program. If the
R option is included, however, all
open data files are kept open.
(RUN <filespec>,R and
LOAD <filespec>,R are equivalent.)

Loads the program from disk into
memory but does not delete the
current contents of memory. The
program line numbers on disk are
merged with the line numbers in
memory. If two lines have the
same number, only the line from
the disk program is saved. After a
MERGE command, the “merged”
program resides in memory, and
BASIC returns to command level.

Deletes the file from the disk.
<filespec> may be a program file
or a sequential or random access
data file.

KILL <filespec>

148 Microsoft BASIC Reference Manual

NAME cold filespec>
AS <filename>

Changes the name of a disk file.
NAME may be used with program
files, random files, or sequential
files.

Protected File

If you wish to save a program in an encoded binary format, use the
“Protect” option with the SAVE command.

For example:

SAVE “MYPROG”,P

A program saved this way cannot be listed or edited. You may
also want to save an unprotected copy of the program for listing
and editing purposes.

Disk Data Files:
Sequential and Random I/O

There are two types of disk data files that may be created and
accessed by a BASIC program: sequential files and random
access files.

Sequential Files
Sequential files are easier to create than random files but are
limited in flexibility and speed when it comes to accessing data.
The data that is written to a sequential file is a series of ASCII
characters stored, one item after another (sequentially), in the
order it is sent and is read back in the same way.

The statements and functions that are used with sequential
files are:

CLOSE LOC PRINT
EOF LOF PRINT# USING
INPUT# OPEN WRITE
LINE INPUT#

Microsoft BASIC Disk I/O 149

The following program steps are required to create a sequential
file and access the data in it:

1. OPEN the file in “O” mode.

2. Write data to the file
using the PRINT# statement.
(WRITE# may be used instead.)

3. To access the data in the
file, you must CLOSE the file
and reopen it in “I” mode.

4. Use the INPUT# statement
to read data from the sequential
file into the program.

OPEN “O”,#1 ,“DATA”

PRINT#1,A$;B$;C$

CLOSE #1
OPEN “I”,#1,“DATA”

INPUT#1,X$,Y$,Z$

Program 1 is a short program that creates a sequential file, “DATA,”
from information you input at the keyboard.

Program 1—Create a Sequential Data File

10 OPEN “O”,#1,“DATA”
20 INPUT “NAME”;N$
25 IF N$=“DONE” THEN END
30 INPUT “DEPARTMENT”;D$
40 INPUT “DATE HIRED”;H$
50 PRINT#1 ,N$;“,”;D$;“,”;H$
60 PRINT:GOTO20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/81

150 Microsoft BASIC Reference Manual

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/81

NAME? etc.

Now look at Program 2. It accesses the file “DATA” that was created
in Program 1 and displays the name of everyone hired in 1981.

Program 2—Accessing a Sequential File

10 OPEN “1 ”,#1,“DATA”
20 INPUT#1,N$,D$,H$
30 IF RIGHT$(H$,2)=“81 ” THEN PRINT N$
40 GOTO 20
RUN
Ok
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

Program 2 reads, sequentially, every item in the file. When all the
data has been read, line 20 causes an “Input past end” error. To
avoid this error, insert line 15 which uses the EOF function to test
for the end of file

15 IF EOF(1)THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write formatted
data to the disk with the PRINT# USING statement. For example,
the statement

PRINT#1,USING”####.##,”;A,B,C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string separates
the items in the disk file.

Microsoft BASIC Disk I/O 51

■
■
II
H
H
H
n
n
■
n
■
■
■
■
■

■

The LOC function, when used with a sequential file, returns the
number of sectors that have been written to or read from the file
since it was opened. A sector is a 128-byte block of data.

Adding Data to a Sequential File
If you have a sequential file residing on disk and want to add more
data to the end of it, you cannot simply open the file in “O” mode
and start writing data. As soon as you open a sequential file in “0”
mode, you destroy its current contents.

The following procedure can be used to add data to an existing
file called “NAMES.”

1. OPEN “NAMES” in “I” mode.

2. OPEN a second file called “COPY” in “O” mode.
3. Read in the data in “NAMES” and write it to “COPY.”
4. CLOSE “NAMES” and KILL it.

5. Write the new information to “COPY.”

6. Rename “COPY” as “NAMES” and CLOSE.

7. Now there is a file on disk called “NAMES” that includes
all the previous data plus the new data you just added.

Program 3 illustrates this technique. It can be used to create or add
onto a file called NAMES. This program also illustrates the use of
LINE INPUT# to read strings with embedded commas from the disk
file. Remember, LINE INPUT# reads in characters from the disk
until it sees a carriage return (it does not stop at quotation marks
or commas) or until it has read 255 characters.

M
II
M

152 Microsoft BASIC Reference Manual

Program 3-Adding Data to a Sequential File

10 ON ERROR GOTO 2000
20 OPEN “I”,#1,“NAMES”
30 REM IF FILE EXISTS, WRITE IT TO “COPY”
40 OPEN “O”,#2,“COPY”
50 IF EOF(1)THEN 90
60 LINE INPUT#1,A$
70 PRINT#2,A$
80 GOTO 50
90 CLOSE #1
100 KILL “NAMES”
110 REM ADD NEW ENTRIES TO FILE
120 INPUT “NAME”;N$
130 IF N$=“” THEN CARRIAGE RETURN EXITS
INPUT LOOP
140 LINE INPUT “ADDRESS? ”;A$
150 LINE INPUT “BIRTHDAY? ”;B$
160 PRINT#2,N$
170 PRINT#2,A$
180 PRINT#2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO “NAMES”
210 NAME “COPY” AS “NAMES”
2000 IF ERR=53 AND ERL=20 THEN OPEN “O”,#2,
“COPY”:RESUME 120
2010 ON ERROR GOTO 0

The error trapping routine in line 2000 traps a “File does not exist”
error in line 20. If this happens, the statements that copy the file
are skipped, and “COPY” is created as if it were a new file.

Random Files
Creating and accessing random files requires more program steps
than creating and accessing sequential files. However, there are
advantages to using random files. One advantage is that random
files require less room on the disk, because BASIC stores them
in a packed binary format. (A sequential file is stored as a series
of ASCII characters.)

Microsoft BASIC Disk I/O 153

The biggest advantage of using random files is that data can be
accessed randomly, i.e., anywhere on the disk—it is not neces­
sary to read through all the information from the beginning of
the file, as with sequential files. This is possible because the
information is stored and accessed in distinct units called records,
each of which is numbered.

The statements and functions that are used with random files
are:

Statements
CLOSE
FIELD
GET
LOC
LSET
OPEN
PUT
RSET

Functions
CVD
CVI
CVS
LOF
MKDS
MKIS
MKSS

Creating a Random File
The following program steps are required to create a random
file.

1. OPEN the file for random access (“R” mode). This example
specifies a record length of 32 bytes. If the record length is
omitted, the default is 128 bytes.

Example:

OPEN “R”, 1,“FILE”,32

2. Use the FIELD statement to allocate space in the random
buffer for the variables that will be written to the random
file.

Example:

FIELD #1,20 AS NS,
4 AS AS, 8 AS PS

154 Microsoft BASIC Reference Manual

3. Use LSET to move the data into the random buffer.
Numeric values must be made into strings when placed in
the buffer. To do this, use the “make” functions: MKI$
to make an integer value into a string, MKS$ to make a
single precision value into a string, and MKD$ to make a
double precision value into a string.

Example:

LSET N$=X$
LSET A$=MKS$(AMT)
LSET P$=TEL$

4. Write the data from the buffer to the disk using the PUT
statement.

Example:

PUT#1,CODE%

Look at Program 4. It takes information that is input at the terminal
and writes it to a random file. Each time the PUT statement is
executed, a record is written to the file. The two-digit code that is
input in line 30 becomes the record number.

Note

Do not use a fielded string variable in an INPUT or
LET statement. This causes the pointer for that
variable to point into string space instead of the
random file buffer.

Microsoft BASIC Disk I/O 155

Program 4—Create a Random File

10 OPEN “R”,#1,“FILE”,32
20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT “2-DIGIT CODE”;CODE%
40 INPUT “NAME”;X$
50 INPUT “AMOUNT”;AMT
60 INPUT “PHONE”;TEL$:PRINT
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT#1,CODE%
110 GOTO 30

Accessing a Random File
The following program steps are required to access a random
file:

1. OPEN the file in “R” mode.

Example:

OPEN “R”, 1,“FILE”,32

2. Use the FIELD statement to allocate space in the random
buffer for the variables that will be read from the file.

Example:

FIELD #1 20 AS N$,
4 AS A$, 8 AS P$

Note

In a program that performs both input and output on
the same random file, you can often use just one
OPEN statement and one FIELD statement.

156 Microsoft BASIC Reference Manual

3. Use the GET statement to move the desired record into the
random buffer.

Example:

GET#1,CODE%

4. The data in the buffer may now be accessed by the
program. Numeric values must be converted back to
numbers using the “convert” functions: CVI for integers,
CVS for single precision values, and CVD for double precision
values.

Example:

PRINT N$
PRINT CVS(A$)

Program 5 accesses the random file “FILE” that was created in
Program 4. By entering the three-digit code at the keyboard
terminal, the information associated with that code is read from the
file and displayed.

Program 5—Access a Random File

10 OPEN “R”,#1 ,“FILE”,32
20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT “2-DIGIT CODE”;CODE%
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING “$$###.##”;CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

The LOC function, when used with random files, returns the
“current record number.” The current record number is one plus
the last record number that was used in a GET or PUT statement.
For example, the statement

IF LOC(1)>50 THEN END

ends program execution if the current record number in file# 1 is
greater than 50.

Microsoft BASIC Disk I/O 157

Program 6 is an inventory program that illustrates random file
access. In this program, the record number is used as the part
number. It is assumed the inventory will contain no more than
100 different part numbers. Lines 900-960 initialize the data file by
writing CHR$(255) as the first character of each record. This is
used later (line 270 and line 500) to determine whether an entry
already exists for that part number.

Lines 130-220 display the different inventory functions that the
program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

Program 6—Inventory

120 OPEN“R”,#1,“INVEN.DAT”,39
125 FIELD#1,1 AS F$,30AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINTPRINT “FUNCTIONS:”PRINT
135 PRINT 1,“INITIALIZE FILE”
140 PRINT 2,“CREATE A NEW ENTRY”
150 PRINT 3,“DISPLAY INVENTORY FOR ONE PART”
160 PRINT 4,“ADD TO STOCK”
170 PRINT 5,“SUBTRACT FROM STOCK”
180 PRINT 6,“DISPLAY ALL ITEMS BELOW REORDER
LEVEL”
220 PRINTPRINT:INPUT“FUNCTION”;FUNCTION
225 IF (FUNCTIONS)OR(FUNCTION>6) THEN PRINT
“BAD FUNCTION NUMBER”:GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT“OVERWRITE”;A$:
IF A$<>“Y” THEN RETURN
280 LSET F$=CHR$(0)
290 INPUT “DESCRIPTION”;DESC$
300 LSET D$=DESC$
310 INPUT “QUANTITY IN STOCK”;Q%
320 LSET Q$=MKI$(Q%)
330 INPUT “REORDER LEVEL”;R%
340 LSET R$=MKI$(R%)
350 INPUT “UNIT PRICE”;P

158 Microsoft BASIC Reference Manual

360 LSET P$=MKS$(P)
370 PUT#1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400GOSUB 840
410 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:
RETURN
420 PRINT USING “PART NUMBER ###”;PART%
430 PRINT D$
440 PRINT USING “QUANTITY ON HAND #####”;CVI(Q$)
450 PRINT USING “REORDER LEVEL #####”;CVI(R$)
460 PRINT USING “UNIT PRICE $$##.##”;CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490GOSUB 840
500 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:
RETURN
510 PRINT D$:INPUT “QUANTITY TO ADD ”;A%
520 Q%=CVI(Q$)+A%
530 LSET Q$=MKI$(Q%)
540 PUT#1,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570GOSUB840
580 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:
RETURN
590 PRINT D$
600 INPUT “QUANTITY TO SUBTRACT”;S%
610 Q%=CVI(Q$)
620 IF (Q%-S%)<0 THEN PRINT “ONLY”;Q%;“ IN STOCK”:
GOTO 600
630 Q%=Q%-S%
640 IF 0%=<CVI(R$) THEN PRINT “QUANTITY NOW”;Q%;
“REORDER LEVEL”;CVI(R$)
650 LSET Q$=MKI$(Q%)
660 PUT#1,PART%
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR 1=1 TO 100
710GET#1,l
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;“ QUANTITY”;
CVI(Q$) TAB(50) “REORDER LEVEL”;CVI(R$)

Microsoft BASIC Disk I/O 159

730 NEXT I
740 RETURN
840 INPUT “PART NUMBER”;PART%
850 IF(PART%<1)OR(PART%>100) THEN PRINT
“BAD PART NUMBER”:GOTO 840 ELSE GET#1,PART%:
RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT “ARE YOU SURE”;B$:IF B$O“Y”
THEN RETURN
920 LSET F$=CHR$(255)
930 FOR 1=1 TO 100
940 PUT#1,I
950 NEXT I
960 RETURN

160 Microsoft BASIC Reference Manual

Appendix C

BASIC
Assembly Language Subroutines

All versions of Microsoft BASIC have provisions for interfacing
with assembly language subroutines via the USR function and the
CALL statement.

The USR function allows assembly language subroutines to be
called in the same way BASIC intrinsic functions are called.

Memory Allocation

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization, enter
the highest possible memory location minus the amount of memory
needed for the assembly language subroutine(s) with the /M:
switch.

BASIC uses all memory available from its starting location
upwards, so only the topmost locations in memory can be set aside
for user subroutines.

If, when an assembly language subroutine is called, more stack
space is needed, BASIC’s stack can be saved and a new stack
set up for use by the assembly language subroutine. BASIC’s stack
must be restored, however, before returning from the subroutine.

M

BASIC Assembly Language Subroutines 161

The assembly language subroutine may be loaded into memory
by means of the operating system or the BASIC POKE statement.

USR Function Calls

The format of the USR function is

USR[<digit>](<argument>)

where <digit> is a number from 0 to 9 and the <argument> is any
numeric or string expression. <digit> specifies which USR routine
is being called and corresponds with the digit supplied in the DEF
USR statement for that routine. If <digit> is omitted, USRO is
assumed. The address given in the DEF USR statement determines
the starting address of the subroutine.

When the USR function call is made, register A contains a value
that specifies the type of argument that was given. The value in A
may be one of the following:

Value in A Type of Argument

2 Two-byte integer (two’s complement)
3 String
4 Single precision floating-point number
8 Double precision floating-point number

If the argument is a number, the [H,L] register pair points to the
Floating-Point Accumulator (FAC) where the argument is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument.

FAC-2 contains the upper 8 bits of the argument.

162 Microsoft BASIC Reference Manual

If the argument is a single precision floating-point number:

FAC-3 contains the lowest 8 bits of mantissa.

FAC-2 contains the middle 8 bits of mantissa.

FAC-1 contains the highest 7 bits of mantissa with leading
1 suppressed (implied). Bit 7 is the sign of the
number (0=positive, 1-negative). FAC is the
exponent minus 128; the binary point is to the left
of the most significant bit of the mantissa.

If the argument is a double precision floating-point number:

FAC-7 through FAC-4 contain four more bytes of mantissa.
(FAC-7 contains the lowest 8 bits.)

If the argument is a string, the [D,E] register pair points to 3 bytes
called the “string descriptor.” Byte 0 of the string descriptor
contains the length of the string (0 to 255). Bytes 1 and 2,
respectively, are the lower and upper 8 bits of the string starting
address in string space.

Caution

If the argument is a string literal in the program, the string
descriptor will point to program text. Be careful not to
alter or destroy your program this way. To avoid
unpredictable results, add + “ ” to the string literal in the
program.

Example:

A$ = “BASIC“ + ””

This copies the string literal into string space and prevents
alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same type
(integer, string, single precision, or double precision) as the
argument that was passed to it. However, calling the MAKINT
routine returns the integer in [H,L] as the value of the function,

BASIC Assembly Language Subroutines 163

H
n
Hl
n

ii

forcing the value returned by the function to be an integer. To
execute MAKI NT, use the following sequence to return from the
subroutine:

PUSH H
LHLD xxx
XTHL

RET

;save value to be returned
;get address of MAKINT routine
;save return on stack and
;get back [H,L]
; return

Also, the argument of the function, regardless of its type, may
be forced to an integer by calling the FRCINT routine to get the
integer value of the argument in [H,L]. Execute the following
routine:

LXI H

PUSH H
LHLD xxx
PCHL

SUB1:

;get address of subroutine
continuation
;place on stack
;get address of FRCINT

CALL Statement

User function calls to Z80 assembly language subroutines may be
made with the CALL statement (see “CALL,” Chapter 3).

Calling a Z80 Subroutine
A CALL statement with no arguments generates a simple CALL
instruction. The corresponding subroutine should return via a
simple RET. (CALL and RET are 8080 opcodes - see an 8080
reference manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine. That
parameter is the address of the low byte of the argument.
Therefore, parameters always occupy two bytes each,
regardless of type.

164 Microsoft BASIC Reference Manual

The method of passing parameters depends upon the number of
parameters to pass:

1. If the number of parameters is less than or equal to three,
they are passed in the registers. Parameter 1 will be in HL,
2 in DE (if present), and 3 in BC (if present).

2. If the number of parameters is greater than 3, they are
passed as follows:

a. Parameter 1 in HL
b. Parameter 2 in DE
c. Parameters 3 through n in a contiguous

data block. BC will point to the low byte
of this data block (i.e., to the low byte
of parameter 3).

Note that with this scheme the subroutine must know how many
parameters to expect in order to find them. Conversely, the calling
program is responsible for passing the correct number of
parameters. There are no checks for the correct number or type of
parameters.

If the subroutine expects more than three parameters, and there
is a need to transfer them to a local data area, use a system
subroutine to perform this transfer. The subroutine $AT (listed in
the following paragraphs) is called with HL pointing to the local
data area, BC pointing to the third parameter, and A containing the
number of arguments to transfer (i.e., the total number of
arguments minus 2). The subroutine is responsible for saving the
first two parameters before calling AT. For example, if a
subroutine expects five parameters, it should look like this:

SUBR:SHLD P1 ;SAVE PARAMETER 1
XCHG
SHLD P2 ;SAVE PARAMETER 2
MVI A,3 ;NO. OF PARAMETERS LEFT
LXI H,P3 ;POINTER TO LOCAL AREA
CALL $AT TRANSFER THE OTHER 3

PARAMETERS

BASIC Assembly Language Subroutines 165

[Body of subroutine]

RET ;RETURNTO CALLER
P1: DS 2 ;SPACE FOR PARAMETER 1
P2: DS 2 ;SPACE FOR PARAMETER 2
P3: DS 6 ;SPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine $AT follows.

00100
00200 ;[B,C]

ARGUMENT TRANSFER
POINTS TO 3RD PARAM.

00300 ;[H,L] POINTS TO LOCAL STORAGE FOR
;PARAM 3

00400

00500
00600
00700

;[A] CONTAINS THE # OF PARAMS TO
;XFER (TOTAL-2)

ENTRY $AT
00800
00900
01000

$AT: XCHG ;SAVE [H,L] IN [D.E]
MOV H,B
MOV L,C ;[H,L] = PTRTO

; PARAMS
01100
01200
01300
01400
01500

01600
01700
01800
01900

02000

02100

02200
02300

AT1: MOV C,M
INX H
MOV B,M
INX H ;[B,C] = PARAM ADR
XCHG ;[H,L] POINTS TO

;LOCAL STORAGE
MOV M,C
INX H
MOV M,B
INX H ;STORE PARAM IN

;LOCAL AREA
XCHG ;SINCE GOING BACK

;TO AT1
DCR A TRANSFERRED ALL

;PARAMS?
JNZ AT1 ;NO, COPY MORE
RET ;YES, RETURN

66 Microsoft BASIC Reference Manual

When accessing parameters in a subroutine, remember that they
are pointers to the actual arguments passed.

Note

The programmer must match the number, type, and
length of the arguments in the calling program with the
parameters expected by the subroutine. This applies to
BASIC subroutines, as well as those written in assembly
language.

I

Error Codes and Error Messages 167

n
■
■
n Appendix D

_ Summary of
Error Codes and Error Messages

■

— Program Errors
— Error

Code Message _________ Explanation________________
NEXT without FOR A variable in a NEXT statement

does not correspond to any
previously executed, unmatched
FOR statement variable.

Syntax error A line is encountered that
contains some incorrect
sequence of characters (such as
unmatched parenthesis, mis­
spelled command or statement,
incorrect punctuation, etc.).

RETURN without GOSUB A RETURN statement is
encountered for which there is
no previous, unmatched
GOSUB statement.

Out of data A READ statement is executed
when there are no DATA
statements with unread data
remaining in the program.

n

■

n

n
n
n

168 Microsoft BASIC Reference Manual

5 Illegal function call

6 Overflow

7 Out of memory

8 Undefined line

A parameter that is out of range
is passed to a math or string
function. This error may also
occur as the result of:
1. A negative or

unreasonably large
subscript

2. A negative or zero
argument with LOG

3. A negative argument to SQR
4. A negative mantissa with a

non-integer exponent
5. A negative record on a GET

or PUT statement

6. A call to a USR function for
which the starting address
has not yet been given

7. An improper argument to
MIDS, LEFTS, RIGHTS,
PEEK, POKE, TAB, SPC,
STRINGS, SPACES,
INSTR, or ON...GOTO

The result of a calculation is too
large to be represented in
Microsoft BASIC’s number
format. If underflow occurs, the
result is zero and execution
continues without an error.

A program is too large, has too
many FOR loops or GOSUBs,
too many variables, or
expressions that are too
complicated.

A line referenced in a GOTO,
GOSUB, IF...THEN...ELSE, or
DELETE statement is a
nonexistent line.

Error Codes and Error Messages 169

9 Subscript out of range

10 Redimensioned array

Caused by one of three
conditions:
1. An array element is

referenced with a sub­
script that is outside the
dimensions of the array

2. An array element is
referenced with the wrong
number of subscripts.

3. A subscript was used on a
variable that is not
an array.

Caused by one of three
conditions:
1. Two DIM statements are

given for the same array.
2. A DIM statement is given for

an array after the default
dimension of 10 has been
established for that array.

3. An OPTION BASE
statement has been
encountered after an
array has been
dimensioned by either
default or a
DIM statement.

170 Microsoft BASIC Reference Manual

11 Division by zero

12 Illegal direct

13 Type mismatch

14 Out of string space

Caused by one of two conditions:

1. A division by zero operation
is encountered in an
expression. Machine
infinity with the sign of
the numerator is supplied
as the result of the divi­
sion. Execution continues.

2. Raising zero to a negative
power occurred. Positive
machine infinity with the
sign of the numerator is
supplied as the result of
the division. Execution
continues.

A statement that is illegal
in direct mode is entered as a
direct mode command.
For example, DEF FN.

A string variable name is
assigned a numeric value or
vice versa; a function that
expects a numeric argument
is given a string argument
or vice versa. This error may
also be caused by trying to
swap single precision and
double precision values.

String variables have caused
BASIC to exceed the amount of
free memory remaining. BASIC
will allocate string space
dynamically, until it runs out
of memory.

Error Codes and Error Messages 171

H
■
H
n
n
ii
n

15 String too long

16 String formula too
complex

17 Can’t continue

18 Undefined user function

19 No RESUME

20 RESUME without error

21 Unprintable error

22 Missing operand

An attempt was made to create
a string more than 255 charac­
ters long.
A string expression is too long
or too complex. The expression
should be broken into smaller
expressions.
An attempt is made to continue
a program that:
1. has halted due to an error,

2. has been modified during a
break in execution, or

3. does not exist.

A USR function is called before
the function definition (DEF
statement) is given.

An error trapping routine is
entered, but contains no
RESUME statement.

A RESUME statement is
encountered before an error
trapping routine is entered.
An error message is not
available for the error condition
which exists. This is usually
caused by an ERROR with an
undefined error code.
An expression contains an
operator without a following
operand.

23

26

29

30

Disk
Error
Code
50

51

52

53

172 Microsoft BASIC Reference Manua

Line buffer overflow

FOR without NEXT

WHILE without WEND

WEND without WHILE

Errors

An attempt is made to input a
line that has too many
characters.
A FOR statement was
encountered without a matching
NEXT statement.

A WHILE statement was
encountered without a matching
WEND statment.

A WEND statement was
encountered without a matching
WHILE statement.

Message
Field overflow

Internal error

Bad file number

File not found

Explanation
A FIELD statement is
attempting to allocate more
bytes than were specified for
the record length of a
random file.
An internal malfunction has
occurred in Microsoft BASIC.
Report to Microsoft the
conditions under which the
message appeared.
A statement or command
references a file with a file
number that is not OPEN or is
out of the range of file numbers
specified at initialization.

A FILES, LOAD, NAME, or
KILL command or OPEN
statement references a file that
does not exist on the current
disk.

Error Codes and Error Messages 173LB__________ _________ _________________

54 Bad file mode

55 File already open

57 Disk I/O error

58 File already exists

61 Disk full
62 Input past end

63 Bad record number

64 Bad file name

An attempt was made to:

1. use PUT, G ET, or LOF with a
sequential file

2. LOAD a random file
3. execute an OPEN

statement with a file
mode other than I, O, or R

A sequential output mode
OPEN is issued for a file that is
already open or a KILL is
given for a file that is open.

An I/O error occurred on a
disk I/O operation. It is a fatal
error; i.e., the operating system
cannot recover from the error.
The filename specified in a
NAME statement is identical to
a filename already in use on the
disk.
All disk storage space is in use.
An INPUT statement is
executed after all the data in the
file has been INPUT, or for a
null (empty) file. To avoid this
error, use the EOF function to
detect the end of file.
In a PUT or GET statement, the
record number is either greater
than the maximum allowed
(32767) or equal to zero.

An illegal form is used for the
filespec with a LOAD, SAVE, or
KILL command or an OPEN
statement (e.g., a filename with
too many characters).

174 Microsoft BASIC Reference Manua

66

67

Direct statement in file

Too many files

A direct statement is en­
countered while loading an
ASCII-format file. The LOAD
operation is terminated.

An attempt is made to create a
new file (using SAVE or OPEN)
when all 255 directory entries
are full.

Mathematical Functions 175

Appendix E

Mathematical Functions

Derived Functions

Functions that are not intrinsic to Microsoft BASIC may be
calculated as follows.

Function
SECANT

COSECANT
COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT

Microsoft BASIC Equivalent
SEC(X)=1/COS(X)

CSC(X)=1/SIN(X)
COT(X)=1/TAN(X)
ARCSIN(X)=ATN(X/SQR(-X*X+1))

ARCCOS(X)=-ATN (X/SQR(-X*X+1))
+ 1.5708

ARCSEC(X)=ATN(X/SQR(X*X-1))
+SGN(SGN(X)-1)*1.5708

ARCCSC(X)=ATN(X/SQR(X*X-1))
+(SGN(X)-1)*1.5708

ARCCOT(X)=ATN(X)+1.5708

SINH(X)=(EXP(X)-EXP(-X))/2
COSH(X)=(EXP(X)+EXP(-X))/2

TANH(X)=EXP(-X)/EXP(X)+
EXP(-X)*2 + 1

SECH(X)2/(EXP(X) + EXP(-X))

176 Microsoft BASIC Reference Manual

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

CSCH(X)=2/(EXP(X)-EXP(-X))

COTH(X)=EXP(-X)/(EXP(X)
-EXP(-X))*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1))

ARCCOSH(X) = LOG(X+SQR(X*X-1))

ARCTAN H(X)=LOG((1 +X)/(1-X))/2

ARCSECH(X)=LOG((SQR(-X*X+1)
+ 1)/X)

ARCCSCH(X)=LOG((SGN(X)*SQR
(X*X+1)+1)/X)

ARCCOTH(X)=LOG((X+1)/(X-1))/2

ASCII Character Codes 177

Appendix F

ASCII Character Codes

Dec Hex iCHR Dec Hex CHR Dec Hex CHR
000 OOH NUL 028 1CH FS 056 38H 8
001 01H :SOH 029 1DH GS 057 39H 9
002 02 H :STX 030 1EH RS 058 3AH :
003 03H ETX 031 1FH US 059 3BH ;
004 04H EOT 032 20H SPACE 060 3CH <
005 05H ENQ 033 21H I 061 3DH =
006 06H ,ACK 034 22H 4 J 062 3EH >
007 07H !BEL 035 23H # 063 3FH ?
008 08H BS 036 24H $ 064 40H @
009 09H IHT 037 25H 0/

/o 065 41H A
010 OAH ILF 038 26H & 066 42H B
011 OBH ’\/T 039 27H J 067 43H C
012 OCH IFF 040 28H 068 44H D
013 ODH (CR 041 29H I 069 45H E
014 OEH :SO 042 2AH * 070 46H F
015 OFH ISI 043 2BH -J- 071 47H G
016 10H IDLE 044 2CH J 072 48H H
017 11H IDC1 045 2DH — 073 49H I
018 12H IDC2 046 2EH ■ 074 4AH J
019 13H IDC3 047 2FH / 075 4BH K
020 14H IDC4 048 30H 0 076 4CH L
021 15H INAK 049 31H 1 077 4DH M
022 16H ISYN 050 32 H 2 078 4EH N
023 17H IETB 051 33 H 3 079 4FH 0
024 18H <CAN 052 34H 4 080 50H P
025 19H IEM 053 35H 5 081 51H Q
026 1AH ISUB 054 36H 6 082 52H R
027 1BH IESCAPE 055 37H 7 083 53H S

178 Microsoft BASIC Reference Manual

084 54H 099 63H c 114 72H r
085 55H U 100 64H d 115 73H s
086 56H V 101 65H e 116 74H t
087 57H W 102 66H f 117 75H u
088 58H X 103 67H g 118 76H V
089 59H Y 104 68 H h 119 77H w
090 5AH z 105 69H i 120 78H X
091 5BH [106 6AH j 121 79H y
092 5CH 107 6BH k 122 7AH z
093 5DH] 108 6CH I 123 7BH
094 5EH 109 6DH m 124 7CH I
095 5FH ■-- 110 6EH n 125 7DH I
096 60H z 111 6FH 0 126 7EH
097 61H a 112 70H P 127 7FH DEL
098 62H b 113 71H q

Dec=decimal Hex=hexadecimal (H) CHR=character
LF=Line Feed FF=Form Feed CR=Carriage Return
DEL=Rubout

Note

All 128 ASCII codes can be generated on the Apple
III keyboard. However, the .CONSOLE device
driver which controls the keyboard allows you to
redefine the keys. Your Apple III may be initially
set up to use some of the ASCII codes in a different
manner than is listed here. Consult your Apple III
Standard Device Drivers Manual to verify ASCII
codes used for the Apple III keyboard.

Microsoft BASIC Reserved Words 179

Appendix G

Microsoft BASIC Reserved Words

The following is a list of reserved words used in Microsoft BASIC.

ABS DIM INT OPTION
AND EDIT KILL OR
ASC ELSE LEFTS PEEK
ATN END LEN POKE
AUTO EOF LET POS
CALL ERASE LINE PPRINT
CDBL ERL LIST PRINT#
CHAIN ERR LLIST PUT
CHRS ERROR LOAD RANDOMIZE
CINT END LOC READ
CLEAR EXP LOF REM
CLOSE FIELD LOG RENUM
COMMON FILES LPOS RESET
CONT FIX LPRINT RESTORE
COS FOR LSET RESUME
CSNG FRE MERGE RIGHTS
CVD GET MIDS RND
CVI GOSUB MKDS RSET
CVS HEXS MKIS RUN
DATA IF MKSS SAVE
DEFDBL IMP MOD SBN
DEF FN INKEYS NAME SIN
DEFINT INP NEW SPACE
DEFSNG INPUT NOT SPC
DEFSTR INPUT# OCTS SQR
DEF USR INPUTS ON STOP
DELETE INSTR OPENON STRS

180 Microsoft BASIC Reference Manual

Note

STRING$ THEN USR WHILE
SWAP TO VAL WRITE
SYSTEM TROFF VARPTR WRITE#
TAB TRON WAIT XOR
TAN USING WEND

INP, OUT, and WAIT are reserved words, but are not
implemented in the SoftCard III version of
Microsoft BASIC. Use of these words can result in
an error message.

A
ABS 115
Addition 24
Arctangent 116
Array variables 21,40
Arrays 21
ASC 115-116,117
ASCII codes 117, 177-178
Assembly language subroutines

CALL 37-38
DEFUSR 48-49
FRCINT 163
MAKINT 163
memory allocation 160
POKE 84-85
USR function 138-139
USR function calls 161
VARPTR 140-141
Z80 calls 163

ATN 116
AUTO 37

BASIC
conversion programs 144
disk I/O procedures 146-159
documentation 2
header message 8
initialization 8
learning resources 5

BASIC (continued)
MAT functions 145
modes of operation 10
multiple assignments 145
multiple statements 145
string functions 144

Boolean operators 27

c
CALL 37-38,138
CDBL 116-117, 118, 119
CHAIN

ALL option 38, 40
DELETE option 38, 40
MERGE option 38,39
shared variables 39

Character set 13
CHR$ 117
CINT 117-118,119
CLEAR 41
CLOSE 41-42,148
Command level 10
Commands

AUTO 37
CLOSE 41-42,148
CONT 43-44,105
DELETE 49
EDIT 50-55
LIST 74-75
LLIST 76

182 Microsoft BASIC Reference Manual

Commands (continued) Data Types (continued)
LOAD 76-77, 146, 147 double precision constants 17-18
MERGE 78-79,146,147 fixed-point constants 17
NAME 80,148 floating-point constants 17
NEW 42,81 hex constants 17
OPTION BASE 84 integer constants 17
RENUM 100-101 numeric variables 17-20
RESET 101 octal constants 17
RUN 103-104,147 single precision constants 17-18
SAVE 104-105, 146, 148 string constants 16
SYSTEM 107 string variables 18-20
WIDTH 109-110 type conversion 22-24

COMMON 40,42-43 variables 18-22
Concatenation 30 Debugging 107
Constants 16-18 DEFDBL 39,47-48
CONT 43-44,105 DEF FN 39, 46-47
Control characters DEFINT 39,47-48

Control-A 15 DEFSNG 39, 47
Control-B 15 DEFSTR 39, 47-48
Control-C 15, 37, 43, 73, 75, DEFUSR 48-49,138

107, 124 DELETE 40,49
Control-G 15, 52, 54 DIM 49-50
Control-H 15, 31,51-52 Direct mode 10,43
Control-I 15 Disk drive identifiers 12
Control-J 13, 15 Division 24
Control-K 15 Division by zero 26
Control-0 15,75 Documentation 2
Control-R 15 Double precision constants 17-18
Control-S 15,75
Control-U 16,31 E
Control-X 16 EDIT 50-55
Control-Y 16 Edit mode

COS 118 backspace 51
Cosine 118 deleting text 52-53
CP/M 8-10,11,146 ending the edit mode 53-54
CSNG 119 finding text 53
CVD 119 inserting text 52
CVI 119 moving the cursor 51
CVS 119-120 replacing text 53

D
restarting the edit mode 53-54
subcommands 50-55

DATA 39, 44-45, 97-98, 102 syntax errors 55
Data types END 42,55,63,105

array elements 21 EOF 120,148
array variables 21 ERASE 56
constants 16-18 ERL 21-22,100

Index 183

ERR 21-22
ERROR 56-58
Error codes 32, 167-174
Error messages 32, 167-174
Error trapping 21,81, 103
Escape key 15,51
EXP 121
Exponential power 121
Exponentiation 24
Expressions 24

FIELD 58-59,141
Filename extensions 11-12
FILES 59-60
Files

file functions 148
file statements 148
program file commands 146-148
protected 148
sequential 148

Filespec 9,11
FIX 118,121-122
Floating-Point Accumulator 161
FOR...NEXT 60-62,145
FRCINT 163
FRE 122-123
Free string space 122
Function operators 30
Functions

ABS 115
ASC 115-116,117
ATN 116
CDBL 116-117, 118, 119
CHRS 117
CINT 117-118,119
COS 118
CSNG 119
CVD 119
CVI 119
CVS 119-120
EOF 120
EXP 121
FIX 118,121-122
FRE 122-123

Functions (continued)
HEXS 123
INKEYS 123-124
INPUTS 124-125
INSTR 125-126
INT 118,121,126
LEFTS 126-127,144
LEN 127
LOC 127-128,148
LOF 128,148
LOG 128
LPOS 129
MIDS 129-130,144
MKDS 130
MKIS 130
MKSS 130
nonintrinsic 175-176
OCTS 131
PEEK 131
POS 132
RIGHTS 132,144
RND 96,133
SGN 133
SIN 30,134
SPACES 134-135
SPC 135
SQR 30,135-136
STRS 136
STRINGS 136-137
string 30-31
TAB 137
TAN 138
user-defined 30, 46-47
USR 138-139
VAL 136,139
VARPTR 140-141

G
GET 58,62-63,120,127
GOSUB 63-64,99,100
GOTO 43,63,64-65,99,100

H
Header message 8
HEXS 123
Hexadecimal 9

184 Microsoft BASIC Reference Manual

I
IE..GOTO 65-67
IE..THEN 65-67
IE..THENL..ELSE] 65-67
Indirect mode 10
INKEYS 123-124
INPUT 43,59,67-69,70
Input editing 31-32
INPUTS 124-125
INPUT# 62, 69-70, 148
INSTR 125-126
INT 118,121,126
Integer constants 17
Integer division 25

K
KILL 71,147

L
LEFTS 126-127,144
LEN 127
LET 22,59,72
Line format 13
LINE INPUT 72-73
LINE INPUT# 62, 73-74, 148
Line numbers 13
Line printer 76, 77, 109, 129
LIST 74-75
LLIST 76
LOAD 76-77, 146-147
LOC 127-128,148
LOF 128,148
LOG 128
Logarithms 128
Logical operators 23, 24, 27-30
Loops 60-61
LPOS 129
LPRINT 77,135,137
LPRINT USING 77
LSET 77-78

M
Machine infinity 26
MAKINT 162
MAT 145
Mathematical sign 133

MBASIC 8
MERGE 78-79, 105, 146, 147
MIDS 129-130,144
MKDS 130
MKIS 130
MKSS 130
MOD operator 26
Modulo arithmetic 25-26
Multiplication 24

N
NAME 80,148
Negation 24
Nesting of IF statements 66-67
NEW 42,81,107
Numeric constants 17-18
Numeric variables 18-19

o
OCTS 131
Octal 9
ON ERROR GOTO 39,81-82
ON...GOSUB 64, 82, 100
ON...GOTO 82,100
OPEN 83-84, 120, 148
Operators

arithmetic 24-26, 27
backslash 24-26
Boolean 27
functional 30
logical 23, 24, 27-30
MOD 26
operational precedence 24
relational 26-27
string 30-31

OPTION BASE 39, 50, 84
Overflow 26, 138
Overlays 40

p
PEEK 85,131
POKE 84-85,131
POS 132
PRINT 85-87,135,137,148
PRINT USING 88-92

Index 185

PRINT# 92-95,111
PRINT# USING 92-95, 148
Program conversion

MAT functions 145
multiple assignments 145
multiple statements 145
string concatenation 144
string dimensions 144
string functions 144

Program remarks 99
Protected file 105, 148
PUT 58, 77, 95-96, 127

R
Random files 152

applicable functions 153
applicable statements 153
FIELD 153
GET 153
LOC 153
MKD$ 153
MKI$ 153
MKS$ 153
OPEN 153
PUT 153
string space 153-154

Random numbers 96
RANDOMIZE 96-97
READ 44,97-98,102
Relational operators 26-27
REM 99-100
RENUM 39,100-101
Reserved words 16, 19, 179-180
RESET 101
RESTORE 45,98,102
RESUME 102-103
RETURN 63-64
RIGHTS 132,144
RND 96,133
RSET 77-78
RUN 96, 97,103-104,105,133,

146, 147

s
SAVE 104-105,146,148

Sequential files 148
EOF 148
INPUT# 148
LINE INPUT# 148
LOC 148
OPEN 148
PRINT# 149
PRINT# USING 148

SGN 133
Signum 133
SIN 30,134
Sine 134
Single precision constants 17-18
SPACE? 134-135
SPC 135
SQR 30,135-136
Square roots 135-136
Statements

CALL 37-38,138
CHAIN 38-40
CLEAR 41
CLOSE 41-42,148
COMMON 40,42-43
DATA 39, 44-45, 97-98, 102
DEFDBL 39,47-48
DEF FN 39, 46-47
DEFINT 39,47-48
DEFSNG 39, 47-48
DEFSTR 39, 47-48
DEFUSR 48-49,138
DIM 49-50
END 42,55,63,105
ERASE 56
ERROR 56-58
FIELD 58-59, 141
FOR...NEXT 60-62, 145
GET 58,62-63,120,127
GOSUB...RETURN 63-64,99,100
GOTO 43, 63, 64-65, 99, 100
IF...GOTO 65-67
IF...THEN 65-67
IF...THEN[...ELSE] 65-67
INPUT 43,59,67-69,70
INPUT# 62,69-70,148
KILL 71,147
LET 22,59,72

186 Microsoft BASIC Reference Manual

Statements (continued)
LINE INPUT 72-73
LINE INPUT# 62, 73-74, 148
LPRINT 77,135,137
LPRINT USING 77
LSET 77-78
MID$ 129-130,144
ON ERROR GOTO 39, 81-82
ON...GOSUB 64, 82, 100
ON...GOTO 82,100
OPEN 83-84, 120, 148
POKE 84-85,131
PRINT 85-87,135,137,148
PRINT USING 88-92
PRINT# 92-95,111
PRINT# USING 92-95, 148
PUT 58,77,95-96,127
RANDOMIZE 96-97
READ 44,97-98,102
REM 99-100
RESTORE 45,98,102
RESUME 102-103
RSET 77-78
STOP 43,63,105-106
SWAP 106
TROFF 107-108
TRON 107-108
WHILE...WEND 108-109
WRITE 110,148
WRITE# 95,111

STOP 43,63,105-106
STR$ 136
String comparisons 31
String constants 16
String functions 31, 125, 127, 129
String operations 30-31, 136, 139
String operators 30-31
String space 41
String variables 19
STRINGS 136-137
Subroutines 37, 63
Subscripts 21,84
Subtraction 24
SWAP 106
Syntax notation 4
SYSTEM 107

TAB 137
Tab 15
TAN 138
Tangent 138
TROFF 107-108
TRON 107-108

u
USR 138-139

V
VAL 136,139
Variables

array 21,40
defining array 21
ERL 21-22
ERR 21-22
line input 73
names 19
numeric 18
string 18
truncation 121
type conversion 22-24
use with LET 22

VARPTR 140-141

w
WEND 108-109
WHILE 108-109
WIDTH 109-110
WIDTH LPRINT 109
WRITE 110,148
WRITE# 95,96,111

z
Z80 subroutine calls 163-166

to

COTuck end flap
inside back cover
when using manual.

fltappkz computer
20525 Mariani Avenue

Cupertino, California 95014
(408) 996-1010
TLX171-576

076-0005

